/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__cagk
#define _nrn_initial _nrn_initial__cagk
#define nrn_cur _nrn_cur__cagk
#define _nrn_current _nrn_current__cagk
#define nrn_jacob _nrn_jacob__cagk
#define nrn_state _nrn_state__cagk
#define _net_receive _net_receive__cagk
#define rate rate__cagk
#define state state__cagk
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gbar _p[0]
#define ik _p[1]
#define oinf _p[2]
#define tau _p[3]
#define gkca _p[4]
#define o _p[5]
#define cai _p[6]
#define ek _p[7]
#define Do _p[8]
#define v _p[9]
#define _g _p[10]
#define _ion_cai *_ppvar[0]._pval
#define _ion_ek *_ppvar[1]._pval
#define _ion_ik *_ppvar[2]._pval
#define _ion_dikdv *_ppvar[3]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_alp(void);
static void _hoc_bet(void);
static void _hoc_exp1(void);
static void _hoc_rate(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_cagk", _hoc_setdata,
"alp_cagk", _hoc_alp,
"bet_cagk", _hoc_bet,
"exp1_cagk", _hoc_exp1,
"rate_cagk", _hoc_rate,
0, 0
};
#define alp alp_cagk
#define bet bet_cagk
#define exp1 exp1_cagk
extern double alp( _threadargsprotocomma_ double , double );
extern double bet( _threadargsprotocomma_ double , double );
extern double exp1( _threadargsprotocomma_ double , double , double );
/* declare global and static user variables */
#define abar abar_cagk
double abar = 0.28;
#define bbar bbar_cagk
double bbar = 0.48;
#define d2 d2_cagk
double d2 = 1;
#define d1 d1_cagk
double d1 = 0.84;
#define k2 k2_cagk
double k2 = 1.3e-07;
#define k1 k1_cagk
double k1 = 0.00048;
#define st st_cagk
double st = 1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"k1_cagk", "mM",
"k2_cagk", "mM",
"abar_cagk", "/ms",
"bbar_cagk", "/ms",
"st_cagk", "1",
"gbar_cagk", "mho/cm2",
"ik_cagk", "mA/cm2",
"tau_cagk", "ms",
"gkca_cagk", "mho/cm2",
0,0
};
static double delta_t = 0.01;
static double o0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"d1_cagk", &d1_cagk,
"d2_cagk", &d2_cagk,
"k1_cagk", &k1_cagk,
"k2_cagk", &k2_cagk,
"abar_cagk", &abar_cagk,
"bbar_cagk", &bbar_cagk,
"st_cagk", &st_cagk,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[4]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"cagk",
"gbar_cagk",
0,
"ik_cagk",
"oinf_cagk",
"tau_cagk",
"gkca_cagk",
0,
"o_cagk",
0,
0};
static Symbol* _ca_sym;
static Symbol* _k_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 11, _prop);
/*initialize range parameters*/
gbar = 0.01;
_prop->param = _p;
_prop->param_size = 11;
_ppvar = nrn_prop_datum_alloc(_mechtype, 5, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 1, 0);
_ppvar[0]._pval = &prop_ion->param[1]; /* cai */
prop_ion = need_memb(_k_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[1]._pval = &prop_ion->param[0]; /* ek */
_ppvar[2]._pval = &prop_ion->param[3]; /* ik */
_ppvar[3]._pval = &prop_ion->param[4]; /* _ion_dikdv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _cagk_reg() {
int _vectorized = 1;
_initlists();
ion_reg("ca", -10000.);
ion_reg("k", -10000.);
_ca_sym = hoc_lookup("ca_ion");
_k_sym = hoc_lookup("k_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 11, 5);
hoc_register_dparam_semantics(_mechtype, 0, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 1, "k_ion");
hoc_register_dparam_semantics(_mechtype, 2, "k_ion");
hoc_register_dparam_semantics(_mechtype, 3, "k_ion");
hoc_register_dparam_semantics(_mechtype, 4, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 cagk /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/cagk.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
#define FARADAY _nrnunit_FARADAY[_nrnunit_use_legacy_]
static double _nrnunit_FARADAY[2] = {0x1.81f0fae775425p+6, 96.4853}; /* 96.4853321233100161 */
static double R = 8.313424;
static int _reset;
static char *modelname = "CaGk";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rate(_threadargsprotocomma_ double, double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[1], _dlist1[1];
static int state(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
rate ( _threadargscomma_ v , cai ) ;
Do = ( oinf - o ) / tau ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
rate ( _threadargscomma_ v , cai ) ;
Do = Do / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau )) ;
return 0;
}
/*END CVODE*/
static int state (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
rate ( _threadargscomma_ v , cai ) ;
o = o + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau)))*(- ( ( ( oinf ) ) / tau ) / ( ( ( ( - 1.0 ) ) ) / tau ) - o) ;
}
return 0;
}
double alp ( _threadargsprotocomma_ double _lv , double _lc ) {
double _lalp;
_lalp = _lc * abar / ( _lc + exp1 ( _threadargscomma_ k1 , d1 , _lv ) ) ;
return _lalp;
}
static void _hoc_alp(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = alp ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) );
hoc_retpushx(_r);
}
double bet ( _threadargsprotocomma_ double _lv , double _lc ) {
double _lbet;
_lbet = bbar / ( 1.0 + _lc / exp1 ( _threadargscomma_ k2 , d2 , _lv ) ) ;
return _lbet;
}
static void _hoc_bet(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = bet ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) );
hoc_retpushx(_r);
}
double exp1 ( _threadargsprotocomma_ double _lk , double _ld , double _lv ) {
double _lexp1;
_lexp1 = _lk * exp ( - 2.0 * _ld * FARADAY * _lv / R / ( 273.15 + celsius ) ) ;
return _lexp1;
}
static void _hoc_exp1(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = exp1 ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) , *getarg(3) );
hoc_retpushx(_r);
}
static int rate ( _threadargsprotocomma_ double _lv , double _lc ) {
double _la ;
_la = alp ( _threadargscomma_ _lv , _lc ) ;
tau = 1.0 / ( _la + bet ( _threadargscomma_ _lv , _lc ) ) ;
oinf = _la * tau ;
return 0; }
static void _hoc_rate(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
rate ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 1;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
ek = _ion_ek;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 1; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
ek = _ion_ek;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 1);
nrn_update_ion_pointer(_k_sym, _ppvar, 1, 0);
nrn_update_ion_pointer(_k_sym, _ppvar, 2, 3);
nrn_update_ion_pointer(_k_sym, _ppvar, 3, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
o = o0;
{
rate ( _threadargscomma_ v , cai ) ;
o = oinf ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
cai = _ion_cai;
ek = _ion_ek;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
gkca = gbar * pow( o , st ) ;
ik = gkca * ( v - ek ) ;
}
_current += ik;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
cai = _ion_cai;
ek = _ion_ek;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dik;
_dik = ik;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dikdv += (_dik - ik)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ik += ik ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
cai = _ion_cai;
ek = _ion_ek;
{ state(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(o) - _p; _dlist1[0] = &(Do) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/cagk.mod";
static const char* nmodl_file_text =
"TITLE CaGk\n"
": Calcium activated K channel.\n"
": Modified from Moczydlowski and Latorre (1983) J. Gen. Physiol. 82\n"
"\n"
"UNITS {\n"
" (molar) = (1/liter)\n"
"}\n"
"\n"
"UNITS {\n"
" (mV) = (millivolt)\n"
" (mA) = (milliamp)\n"
" (mM) = (millimolar)\n"
"}\n"
"\n"
"\n"
"NEURON {\n"
" SUFFIX cagk\n"
" USEION ca READ cai\n"
" USEION k READ ek WRITE ik\n"
" RANGE gbar,gkca,ik\n"
" RANGE oinf, tau\n"
"}\n"
"\n"
"UNITS {\n"
" FARADAY = (faraday) (kilocoulombs)\n"
" R = 8.313424 (joule/degC)\n"
"}\n"
"\n"
"PARAMETER {\n"
" celsius (degC)\n"
" v (mV)\n"
" gbar=.01 (mho/cm2) : Maximum Permeability\n"
" cai (mM)\n"
" ek (mV)\n"
"\n"
" d1 = .84\n"
" d2 = 1.\n"
" k1 = .48e-3 (mM)\n"
" k2 = .13e-6 (mM)\n"
" abar = .28 (/ms)\n"
" bbar = .48 (/ms)\n"
" st=1 (1)\n"
"}\n"
"\n"
"ASSIGNED {\n"
" ik (mA/cm2)\n"
" oinf\n"
" tau (ms)\n"
" gkca (mho/cm2)\n"
"}\n"
"\n"
"INITIAL {\n"
" rate(v,cai)\n"
" o=oinf\n"
"}\n"
"\n"
"STATE { o } : fraction of open channels\n"
"\n"
"BREAKPOINT {\n"
" SOLVE state METHOD cnexp\n"
" gkca = gbar*o^st\n"
" ik = gkca*(v - ek)\n"
"}\n"
"\n"
"DERIVATIVE state { : exact when v held constant; integrates over dt step\n"
" rate(v, cai)\n"
" o' = (oinf - o)/tau\n"
"}\n"
"\n"
"FUNCTION alp(v (mV), c (mM)) (1/ms) { :callable from hoc\n"
" alp = c*abar/(c + exp1(k1,d1,v))\n"
"}\n"
"\n"
"FUNCTION bet(v (mV), c (mM)) (1/ms) { :callable from hoc\n"
" bet = bbar/(1 + c/exp1(k2,d2,v))\n"
"}\n"
"\n"
"FUNCTION exp1(k (mM), d, v (mV)) (mM) { :callable from hoc\n"
" exp1 = k*exp(-2*d*FARADAY*v/R/(273.15 + celsius))\n"
"}\n"
"\n"
"PROCEDURE rate(v (mV), c (mM)) { :callable from hoc\n"
" LOCAL a\n"
" a = alp(v,c)\n"
" tau = 1/(a + bet(v, c))\n"
" oinf = a*tau\n"
"}\n"
;
#endif