/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__cal
#define _nrn_initial _nrn_initial__cal
#define nrn_cur _nrn_cur__cal
#define _nrn_current _nrn_current__cal
#define nrn_jacob _nrn_jacob__cal
#define nrn_state _nrn_state__cal
#define _net_receive _net_receive__cal
#define rate rate__cal
#define state state__cal
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gcalbar _p[0]
#define ica _p[1]
#define gcal _p[2]
#define minf _p[3]
#define tau _p[4]
#define ggk _p[5]
#define m _p[6]
#define cai _p[7]
#define cao _p[8]
#define Dm _p[9]
#define v _p[10]
#define _g _p[11]
#define _ion_cai *_ppvar[0]._pval
#define _ion_cao *_ppvar[1]._pval
#define _ion_ica *_ppvar[2]._pval
#define _ion_dicadv *_ppvar[3]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_KTF(void);
static void _hoc_alpmt(void);
static void _hoc_alp(void);
static void _hoc_betmt(void);
static void _hoc_bet(void);
static void _hoc_efun(void);
static void _hoc_ghk(void);
static void _hoc_h2(void);
static void _hoc_rate(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_cal", _hoc_setdata,
"KTF_cal", _hoc_KTF,
"alpmt_cal", _hoc_alpmt,
"alp_cal", _hoc_alp,
"betmt_cal", _hoc_betmt,
"bet_cal", _hoc_bet,
"efun_cal", _hoc_efun,
"ghk_cal", _hoc_ghk,
"h2_cal", _hoc_h2,
"rate_cal", _hoc_rate,
0, 0
};
#define KTF KTF_cal
#define alpmt alpmt_cal
#define alp alp_cal
#define betmt betmt_cal
#define bet bet_cal
#define efun efun_cal
#define ghk ghk_cal
#define h2 h2_cal
extern double KTF( _threadargsprotocomma_ double );
extern double alpmt( _threadargsprotocomma_ double );
extern double alp( _threadargsprotocomma_ double );
extern double betmt( _threadargsprotocomma_ double );
extern double bet( _threadargsprotocomma_ double );
extern double efun( _threadargsprotocomma_ double );
extern double ghk( _threadargsprotocomma_ double , double , double );
extern double h2( _threadargsprotocomma_ double );
/* declare global and static user variables */
#define USEGHK USEGHK_cal
double USEGHK = 1;
#define a0m a0m_cal
double a0m = 0.1;
#define erev erev_cal
double erev = 100;
#define gmm gmm_cal
double gmm = 0.1;
#define ki ki_cal
double ki = 0.001;
#define mmin mmin_cal
double mmin = 0.2;
#define q10 q10_cal
double q10 = 5;
#define tfa tfa_cal
double tfa = 1;
#define vhalfm vhalfm_cal
double vhalfm = 4;
#define zetam zetam_cal
double zetam = 2;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"ki_cal", "mM",
"gcalbar_cal", "mho/cm2",
"ica_cal", "mA/cm2",
"gcal_cal", "mho/cm2",
"tau_cal", "ms",
0,0
};
static double delta_t = 0.01;
static double m0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"ki_cal", &ki_cal,
"q10_cal", &q10_cal,
"mmin_cal", &mmin_cal,
"tfa_cal", &tfa_cal,
"a0m_cal", &a0m_cal,
"zetam_cal", &zetam_cal,
"vhalfm_cal", &vhalfm_cal,
"gmm_cal", &gmm_cal,
"USEGHK_cal", &USEGHK_cal,
"erev_cal", &erev_cal,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[4]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"cal",
"gcalbar_cal",
0,
"ica_cal",
"gcal_cal",
"minf_cal",
"tau_cal",
"ggk_cal",
0,
"m_cal",
0,
0};
static Symbol* _ca_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 12, _prop);
/*initialize range parameters*/
gcalbar = 0.003;
_prop->param = _p;
_prop->param_size = 12;
_ppvar = nrn_prop_datum_alloc(_mechtype, 5, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 1, 0);
_ppvar[0]._pval = &prop_ion->param[1]; /* cai */
_ppvar[1]._pval = &prop_ion->param[2]; /* cao */
_ppvar[2]._pval = &prop_ion->param[3]; /* ica */
_ppvar[3]._pval = &prop_ion->param[4]; /* _ion_dicadv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _cal_mig_reg() {
int _vectorized = 1;
_initlists();
ion_reg("ca", -10000.);
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 12, 5);
hoc_register_dparam_semantics(_mechtype, 0, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 1, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 2, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 3, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 4, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 cal /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/cal_mig.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double FARADAY = 96520.0;
static double R = 8.3134;
static double KTOMV = .0853;
static int _reset;
static char *modelname = "L-calcium channel";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rate(_threadargsprotocomma_ double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[1], _dlist1[1];
static int state(_threadargsproto_);
double h2 ( _threadargsprotocomma_ double _lcai ) {
double _lh2;
_lh2 = ki / ( ki + _lcai ) ;
return _lh2;
}
static void _hoc_h2(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = h2 ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double ghk ( _threadargsprotocomma_ double _lv , double _lci , double _lco ) {
double _lghk;
double _lnu , _lf ;
_lf = KTF ( _threadargscomma_ celsius ) / 2.0 ;
_lnu = _lv / _lf ;
_lghk = - _lf * ( 1. - ( _lci / _lco ) * exp ( _lnu ) ) * efun ( _threadargscomma_ _lnu ) ;
return _lghk;
}
static void _hoc_ghk(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = ghk ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) , *getarg(3) );
hoc_retpushx(_r);
}
double KTF ( _threadargsprotocomma_ double _lcelsius ) {
double _lKTF;
_lKTF = ( ( 25. / 293.15 ) * ( _lcelsius + 273.15 ) ) ;
return _lKTF;
}
static void _hoc_KTF(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = KTF ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double efun ( _threadargsprotocomma_ double _lz ) {
double _lefun;
if ( fabs ( _lz ) < 1e-4 ) {
_lefun = 1.0 - _lz / 2.0 ;
}
else {
_lefun = _lz / ( exp ( _lz ) - 1.0 ) ;
}
return _lefun;
}
static void _hoc_efun(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = efun ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double alp ( _threadargsprotocomma_ double _lv ) {
double _lalp;
_lalp = 15.69 * ( - 1.0 * _lv + 81.5 ) / ( exp ( ( - 1.0 * _lv + 81.5 ) / 10.0 ) - 1.0 ) ;
return _lalp;
}
static void _hoc_alp(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = alp ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double bet ( _threadargsprotocomma_ double _lv ) {
double _lbet;
_lbet = 0.29 * exp ( - _lv / 10.86 ) ;
return _lbet;
}
static void _hoc_bet(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = bet ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double alpmt ( _threadargsprotocomma_ double _lv ) {
double _lalpmt;
_lalpmt = exp ( 0.0378 * zetam * ( _lv - vhalfm ) ) ;
return _lalpmt;
}
static void _hoc_alpmt(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = alpmt ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double betmt ( _threadargsprotocomma_ double _lv ) {
double _lbetmt;
_lbetmt = exp ( 0.0378 * zetam * gmm * ( _lv - vhalfm ) ) ;
return _lbetmt;
}
static void _hoc_betmt(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = betmt ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
rate ( _threadargscomma_ v ) ;
Dm = ( minf - m ) / tau ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
rate ( _threadargscomma_ v ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau )) ;
return 0;
}
/*END CVODE*/
static int state (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
rate ( _threadargscomma_ v ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau)))*(- ( ( ( minf ) ) / tau ) / ( ( ( ( - 1.0 ) ) ) / tau ) - m) ;
}
return 0;
}
static int rate ( _threadargsprotocomma_ double _lv ) {
double _la , _lb , _lqt ;
_lqt = pow( q10 , ( ( celsius - 25.0 ) / 10.0 ) ) ;
_la = alp ( _threadargscomma_ _lv ) ;
_lb = 1.0 / ( ( _la + bet ( _threadargscomma_ _lv ) ) ) ;
minf = _la * _lb ;
tau = betmt ( _threadargscomma_ _lv ) / ( _lqt * a0m * ( 1.0 + alpmt ( _threadargscomma_ _lv ) ) ) ;
if ( tau < mmin / _lqt ) {
tau = mmin / _lqt ;
}
return 0; }
static void _hoc_rate(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
rate ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 1;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
cao = _ion_cao;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 1; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
cao = _ion_cao;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 1);
nrn_update_ion_pointer(_ca_sym, _ppvar, 1, 2);
nrn_update_ion_pointer(_ca_sym, _ppvar, 2, 3);
nrn_update_ion_pointer(_ca_sym, _ppvar, 3, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
m = m0;
{
rate ( _threadargscomma_ v ) ;
m = minf ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
cai = _ion_cai;
cao = _ion_cao;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
gcal = gcalbar * m * m * h2 ( _threadargscomma_ cai ) ;
if ( USEGHK == 1.0 ) {
ggk = ghk ( _threadargscomma_ v , cai , cao ) ;
}
else {
ggk = v - erev ;
}
ica = gcal * ggk ;
}
_current += ica;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
cai = _ion_cai;
cao = _ion_cao;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dica;
_dica = ica;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dicadv += (_dica - ica)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ica += ica ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
cai = _ion_cai;
cao = _ion_cao;
{ state(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/cal_mig.mod";
static const char* nmodl_file_text =
"TITLE L-calcium channel\n"
": L-type calcium channel with [Ca]i inactivation\n"
": from Jaffe, D. B., Ross, W. N., Lisman, J. E., Laser-Ross, N., Miyakawa, H., and Johnston, D. A. A model for dendritic Ca2\n"
": accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. J. Neurophysiol. 71:1O65-1077 1994.\n"
": conduction density estimate of 50-200 pS/mu2; 0.0025 S/cm2 (5-20 channels of 10 each)\n"
": M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer simulations of morphologically reconstructed CA3\n"
": hippocampal neurons, J. Neurophysiol. 73, 1157-1168 (1995). \n"
": adapted from http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=3263&file=\\ca3_db\\cal2.mod\n"
": this version from https://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=148094&file=\\kv72-R213QW-mutations\\cal2.mod\n"
": Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M, Cilio MR, Taglialatela M (2013) Genotype-phenotype\n"
": correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits. PNAS 110:4386-4391\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
"\n"
" FARADAY = 96520 (coul)\n"
" R = 8.3134 (joule/degC)\n"
" KTOMV = .0853 (mV/degC)\n"
"}\n"
"\n"
"PARAMETER {\n"
" v (mV)\n"
" celsius (degC)\n"
" gcalbar=.003 (mho/cm2)\n"
" ki=.001 (mM)\n"
" cai = 50.e-6 (mM)\n"
" cao = 2 (mM)\n"
" q10 = 5\n"
" mmin=0.2\n"
" tfa = 1\n"
" a0m =0.1\n"
" zetam = 2\n"
" vhalfm = 4\n"
" gmm=0.1 \n"
" USEGHK=1\n"
" erev = 100\n"
"}\n"
"\n"
"\n"
"NEURON {\n"
" SUFFIX cal\n"
" USEION ca READ cai,cao WRITE ica\n"
" RANGE gcalbar,cai, ica, gcal, ggk\n"
" RANGE minf,tau\n"
" GLOBAL USEGHK\n"
"}\n"
"\n"
"STATE {\n"
" m\n"
"}\n"
"\n"
"ASSIGNED {\n"
" ica (mA/cm2)\n"
" gcal (mho/cm2)\n"
" minf\n"
" tau (ms)\n"
" ggk\n"
"}\n"
"\n"
"INITIAL {\n"
" rate(v)\n"
" m = minf\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE state METHOD cnexp\n"
" gcal = gcalbar*m*m*h2(cai)\n"
" if (USEGHK == 1) {\n"
" ggk=ghk(v,cai,cao)\n"
" } else {\n"
" ggk=v-erev\n"
" }\n"
" ica = gcal*ggk\n"
"}\n"
"\n"
"FUNCTION h2(cai(mM)) {\n"
" h2 = ki/(ki+cai)\n"
"}\n"
"\n"
"\n"
"FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {\n"
" LOCAL nu,f\n"
" f = KTF(celsius)/2\n"
" nu = v/f\n"
" ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)\n"
"}\n"
"\n"
"FUNCTION KTF(celsius (DegC)) (mV) {\n"
" KTF = ((25./293.15)*(celsius + 273.15))\n"
"}\n"
"\n"
"\n"
"FUNCTION efun(z) {\n"
" if (fabs(z) < 1e-4) {\n"
" efun = 1 - z/2\n"
" }else{\n"
" efun = z/(exp(z) - 1)\n"
" }\n"
"}\n"
"\n"
"FUNCTION alp(v(mV)) (1/ms) {\n"
" alp = 15.69*(-1.0*v+81.5)/(exp((-1.0*v+81.5)/10.0)-1.0)\n"
"}\n"
"\n"
"FUNCTION bet(v(mV)) (1/ms) {\n"
" bet = 0.29*exp(-v/10.86)\n"
"}\n"
"\n"
"FUNCTION alpmt(v(mV)) {\n"
" alpmt = exp(0.0378*zetam*(v-vhalfm)) \n"
"}\n"
"\n"
"FUNCTION betmt(v(mV)) {\n"
" betmt = exp(0.0378*zetam*gmm*(v-vhalfm)) \n"
"}\n"
"\n"
"DERIVATIVE state { \n"
" rate(v)\n"
" m' = (minf - m)/tau\n"
"}\n"
"\n"
"PROCEDURE rate(v (mV)) { :callable from hoc\n"
" LOCAL a, b, qt\n"
" qt=q10^((celsius-25)/10)\n"
" a = alp(v)\n"
" b = 1/((a + bet(v)))\n"
" minf = a*b\n"
" tau = betmt(v)/(qt*a0m*(1+alpmt(v)))\n"
" if (tau<mmin/qt) {tau=mmin/qt}\n"
"}\n"
;
#endif