/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
 
#if METHOD3
extern int _method3;
#endif

#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
 
#define nrn_init _nrn_init__cal
#define _nrn_initial _nrn_initial__cal
#define nrn_cur _nrn_cur__cal
#define _nrn_current _nrn_current__cal
#define nrn_jacob _nrn_jacob__cal
#define nrn_state _nrn_state__cal
#define _net_receive _net_receive__cal 
#define rate rate__cal 
#define state state__cal 
 
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 /* Thread safe. No static _p or _ppvar. */
 
#define t _nt->_t
#define dt _nt->_dt
#define gcalbar _p[0]
#define ica _p[1]
#define gcal _p[2]
#define minf _p[3]
#define tau _p[4]
#define ggk _p[5]
#define m _p[6]
#define cai _p[7]
#define cao _p[8]
#define Dm _p[9]
#define v _p[10]
#define _g _p[11]
#define _ion_cai	*_ppvar[0]._pval
#define _ion_cao	*_ppvar[1]._pval
#define _ion_ica	*_ppvar[2]._pval
#define _ion_dicadv	*_ppvar[3]._pval
 
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
 
#if defined(__cplusplus)
extern "C" {
#endif
 static int hoc_nrnpointerindex =  -1;
 static Datum* _extcall_thread;
 static Prop* _extcall_prop;
 /* external NEURON variables */
 extern double celsius;
 /* declaration of user functions */
 static void _hoc_KTF(void);
 static void _hoc_alpmt(void);
 static void _hoc_alp(void);
 static void _hoc_betmt(void);
 static void _hoc_bet(void);
 static void _hoc_efun(void);
 static void _hoc_ghk(void);
 static void _hoc_h2(void);
 static void _hoc_rate(void);
 static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
 
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif

 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _extcall_prop = _prop;
 }
 static void _hoc_setdata() {
 Prop *_prop, *hoc_getdata_range(int);
 _prop = hoc_getdata_range(_mechtype);
   _setdata(_prop);
 hoc_retpushx(1.);
}
 /* connect user functions to hoc names */
 static VoidFunc hoc_intfunc[] = {
 "setdata_cal", _hoc_setdata,
 "KTF_cal", _hoc_KTF,
 "alpmt_cal", _hoc_alpmt,
 "alp_cal", _hoc_alp,
 "betmt_cal", _hoc_betmt,
 "bet_cal", _hoc_bet,
 "efun_cal", _hoc_efun,
 "ghk_cal", _hoc_ghk,
 "h2_cal", _hoc_h2,
 "rate_cal", _hoc_rate,
 0, 0
};
#define KTF KTF_cal
#define alpmt alpmt_cal
#define alp alp_cal
#define betmt betmt_cal
#define bet bet_cal
#define efun efun_cal
#define ghk ghk_cal
#define h2 h2_cal
 extern double KTF( _threadargsprotocomma_ double );
 extern double alpmt( _threadargsprotocomma_ double );
 extern double alp( _threadargsprotocomma_ double );
 extern double betmt( _threadargsprotocomma_ double );
 extern double bet( _threadargsprotocomma_ double );
 extern double efun( _threadargsprotocomma_ double );
 extern double ghk( _threadargsprotocomma_ double , double , double );
 extern double h2( _threadargsprotocomma_ double );
 /* declare global and static user variables */
#define USEGHK USEGHK_cal
 double USEGHK = 1;
#define a0m a0m_cal
 double a0m = 0.1;
#define erev erev_cal
 double erev = 100;
#define gmm gmm_cal
 double gmm = 0.1;
#define ki ki_cal
 double ki = 0.001;
#define mmin mmin_cal
 double mmin = 0.2;
#define q10 q10_cal
 double q10 = 5;
#define tfa tfa_cal
 double tfa = 1;
#define vhalfm vhalfm_cal
 double vhalfm = 4;
#define zetam zetam_cal
 double zetam = 2;
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 0,0,0
};
 static HocParmUnits _hoc_parm_units[] = {
 "ki_cal", "mM",
 "gcalbar_cal", "mho/cm2",
 "ica_cal", "mA/cm2",
 "gcal_cal", "mho/cm2",
 "tau_cal", "ms",
 0,0
};
 static double delta_t = 0.01;
 static double m0 = 0;
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 "ki_cal", &ki_cal,
 "q10_cal", &q10_cal,
 "mmin_cal", &mmin_cal,
 "tfa_cal", &tfa_cal,
 "a0m_cal", &a0m_cal,
 "zetam_cal", &zetam_cal,
 "vhalfm_cal", &vhalfm_cal,
 "gmm_cal", &gmm_cal,
 "USEGHK_cal", &USEGHK_cal,
 "erev_cal", &erev_cal,
 0,0
};
 static DoubVec hoc_vdoub[] = {
 0,0,0
};
 static double _sav_indep;
 static void nrn_alloc(Prop*);
static void  nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
 static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void  nrn_jacob(_NrnThread*, _Memb_list*, int);
 
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
 
#define _cvode_ieq _ppvar[4]._i
 static void _ode_matsol_instance1(_threadargsproto_);
 /* connect range variables in _p that hoc is supposed to know about */
 static const char *_mechanism[] = {
 "7.7.0",
"cal",
 "gcalbar_cal",
 0,
 "ica_cal",
 "gcal_cal",
 "minf_cal",
 "tau_cal",
 "ggk_cal",
 0,
 "m_cal",
 0,
 0};
 static Symbol* _ca_sym;
 
extern Prop* need_memb(Symbol*);

static void nrn_alloc(Prop* _prop) {
	Prop *prop_ion;
	double *_p; Datum *_ppvar;
 	_p = nrn_prop_data_alloc(_mechtype, 12, _prop);
 	/*initialize range parameters*/
 	gcalbar = 0.003;
 	_prop->param = _p;
 	_prop->param_size = 12;
 	_ppvar = nrn_prop_datum_alloc(_mechtype, 5, _prop);
 	_prop->dparam = _ppvar;
 	/*connect ionic variables to this model*/
 prop_ion = need_memb(_ca_sym);
 nrn_promote(prop_ion, 1, 0);
 	_ppvar[0]._pval = &prop_ion->param[1]; /* cai */
 	_ppvar[1]._pval = &prop_ion->param[2]; /* cao */
 	_ppvar[2]._pval = &prop_ion->param[3]; /* ica */
 	_ppvar[3]._pval = &prop_ion->param[4]; /* _ion_dicadv */
 
}
 static void _initlists();
  /* some states have an absolute tolerance */
 static Symbol** _atollist;
 static HocStateTolerance _hoc_state_tol[] = {
 0,0
};
 static void _update_ion_pointer(Datum*);
 extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);

 void _cal_mig_reg() {
	int _vectorized = 1;
  _initlists();
 	ion_reg("ca", -10000.);
 	_ca_sym = hoc_lookup("ca_ion");
 	register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
     _nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
 #if NMODL_TEXT
  hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
  hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
  hoc_register_prop_size(_mechtype, 12, 5);
  hoc_register_dparam_semantics(_mechtype, 0, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 1, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 2, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 3, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 4, "cvodeieq");
 	hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
 	hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 cal /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/cal_mig.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
 }
 static double FARADAY = 96520.0;
 static double R = 8.3134;
 static double KTOMV = .0853;
static int _reset;
static char *modelname = "L-calcium channel";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rate(_threadargsprotocomma_ double);
 
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
 static int _slist1[1], _dlist1[1];
 static int state(_threadargsproto_);
 
double h2 ( _threadargsprotocomma_ double _lcai ) {
   double _lh2;
 _lh2 = ki / ( ki + _lcai ) ;
   
return _lh2;
 }
 
static void _hoc_h2(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  h2 ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double ghk ( _threadargsprotocomma_ double _lv , double _lci , double _lco ) {
   double _lghk;
 double _lnu , _lf ;
 _lf = KTF ( _threadargscomma_ celsius ) / 2.0 ;
   _lnu = _lv / _lf ;
   _lghk = - _lf * ( 1. - ( _lci / _lco ) * exp ( _lnu ) ) * efun ( _threadargscomma_ _lnu ) ;
   
return _lghk;
 }
 
static void _hoc_ghk(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  ghk ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) , *getarg(3) );
 hoc_retpushx(_r);
}
 
double KTF ( _threadargsprotocomma_ double _lcelsius ) {
   double _lKTF;
 _lKTF = ( ( 25. / 293.15 ) * ( _lcelsius + 273.15 ) ) ;
   
return _lKTF;
 }
 
static void _hoc_KTF(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  KTF ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double efun ( _threadargsprotocomma_ double _lz ) {
   double _lefun;
 if ( fabs ( _lz ) < 1e-4 ) {
     _lefun = 1.0 - _lz / 2.0 ;
     }
   else {
     _lefun = _lz / ( exp ( _lz ) - 1.0 ) ;
     }
   
return _lefun;
 }
 
static void _hoc_efun(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  efun ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double alp ( _threadargsprotocomma_ double _lv ) {
   double _lalp;
 _lalp = 15.69 * ( - 1.0 * _lv + 81.5 ) / ( exp ( ( - 1.0 * _lv + 81.5 ) / 10.0 ) - 1.0 ) ;
   
return _lalp;
 }
 
static void _hoc_alp(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  alp ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double bet ( _threadargsprotocomma_ double _lv ) {
   double _lbet;
 _lbet = 0.29 * exp ( - _lv / 10.86 ) ;
   
return _lbet;
 }
 
static void _hoc_bet(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  bet ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double alpmt ( _threadargsprotocomma_ double _lv ) {
   double _lalpmt;
 _lalpmt = exp ( 0.0378 * zetam * ( _lv - vhalfm ) ) ;
   
return _lalpmt;
 }
 
static void _hoc_alpmt(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  alpmt ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double betmt ( _threadargsprotocomma_ double _lv ) {
   double _lbetmt;
 _lbetmt = exp ( 0.0378 * zetam * gmm * ( _lv - vhalfm ) ) ;
   
return _lbetmt;
 }
 
static void _hoc_betmt(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  betmt ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
/*CVODE*/
 static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
   rate ( _threadargscomma_ v ) ;
   Dm = ( minf - m ) / tau ;
   }
 return _reset;
}
 static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
 rate ( _threadargscomma_ v ) ;
 Dm = Dm  / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau )) ;
  return 0;
}
 /*END CVODE*/
 static int state (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
   rate ( _threadargscomma_ v ) ;
    m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau)))*(- ( ( ( minf ) ) / tau ) / ( ( ( ( - 1.0 ) ) ) / tau ) - m) ;
   }
  return 0;
}
 
static int  rate ( _threadargsprotocomma_ double _lv ) {
   double _la , _lb , _lqt ;
 _lqt = pow( q10 , ( ( celsius - 25.0 ) / 10.0 ) ) ;
   _la = alp ( _threadargscomma_ _lv ) ;
   _lb = 1.0 / ( ( _la + bet ( _threadargscomma_ _lv ) ) ) ;
   minf = _la * _lb ;
   tau = betmt ( _threadargscomma_ _lv ) / ( _lqt * a0m * ( 1.0 + alpmt ( _threadargscomma_ _lv ) ) ) ;
   if ( tau < mmin / _lqt ) {
     tau = mmin / _lqt ;
     }
    return 0; }
 
static void _hoc_rate(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r = 1.;
 rate ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
static int _ode_count(int _type){ return 1;}
 
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  cai = _ion_cai;
  cao = _ion_cao;
     _ode_spec1 (_p, _ppvar, _thread, _nt);
  }}
 
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { 
	double* _p; Datum* _ppvar;
 	int _i; _p = _pp; _ppvar = _ppd;
	_cvode_ieq = _ieq;
	for (_i=0; _i < 1; ++_i) {
		_pv[_i] = _pp + _slist1[_i];  _pvdot[_i] = _pp + _dlist1[_i];
		_cvode_abstol(_atollist, _atol, _i);
	}
 }
 
static void _ode_matsol_instance1(_threadargsproto_) {
 _ode_matsol1 (_p, _ppvar, _thread, _nt);
 }
 
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  cai = _ion_cai;
  cao = _ion_cao;
 _ode_matsol_instance1(_threadargs_);
 }}
 extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
 static void _update_ion_pointer(Datum* _ppvar) {
   nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 1);
   nrn_update_ion_pointer(_ca_sym, _ppvar, 1, 2);
   nrn_update_ion_pointer(_ca_sym, _ppvar, 2, 3);
   nrn_update_ion_pointer(_ca_sym, _ppvar, 3, 4);
 }

static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  int _i; double _save;{
  m = m0;
 {
   rate ( _threadargscomma_ v ) ;
   m = minf ;
   }
 
}
}

static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v = _v;
  cai = _ion_cai;
  cao = _ion_cao;
 initmodel(_p, _ppvar, _thread, _nt);
 }
}

static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
   gcal = gcalbar * m * m * h2 ( _threadargscomma_ cai ) ;
   if ( USEGHK  == 1.0 ) {
     ggk = ghk ( _threadargscomma_ v , cai , cao ) ;
     }
   else {
     ggk = v - erev ;
     }
   ica = gcal * ggk ;
   }
 _current += ica;

} return _current;
}

static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
  cai = _ion_cai;
  cao = _ion_cao;
 _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
 	{ double _dica;
  _dica = ica;
 _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
  _ion_dicadv += (_dica - ica)/.001 ;
 	}
 _g = (_g - _rhs)/.001;
  _ion_ica += ica ;
#if CACHEVEC
  if (use_cachevec) {
	VEC_RHS(_ni[_iml]) -= _rhs;
  }else
#endif
  {
	NODERHS(_nd) -= _rhs;
  }
 
}
 
}

static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml];
#if CACHEVEC
  if (use_cachevec) {
	VEC_D(_ni[_iml]) += _g;
  }else
#endif
  {
     _nd = _ml->_nodelist[_iml];
	NODED(_nd) += _g;
  }
 
}
 
}

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v=_v;
{
  cai = _ion_cai;
  cao = _ion_cao;
 {   state(_p, _ppvar, _thread, _nt);
  } }}

}

static void terminal(){}

static void _initlists(){
 double _x; double* _p = &_x;
 int _i; static int _first = 1;
  if (!_first) return;
 _slist1[0] = &(m) - _p;  _dlist1[0] = &(Dm) - _p;
_first = 0;
}

#if defined(__cplusplus)
} /* extern "C" */
#endif

#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/cal_mig.mod";
static const char* nmodl_file_text = 
  "TITLE L-calcium channel\n"
  ": L-type calcium channel with [Ca]i inactivation\n"
  ": from Jaffe, D. B., Ross, W. N., Lisman, J. E., Laser-Ross, N., Miyakawa, H., and Johnston, D. A. A model for dendritic Ca2\n"
  ": accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. J. Neurophysiol. 71:1O65-1077 1994.\n"
  ": conduction density estimate of 50-200 pS/mu2; 0.0025 S/cm2 (5-20 channels of 10 each)\n"
  ": M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer simulations of morphologically reconstructed CA3\n"
  ": hippocampal neurons, J. Neurophysiol. 73, 1157-1168 (1995). \n"
  ": adapted from http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=3263&file=\\ca3_db\\cal2.mod\n"
  ": this version from https://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=148094&file=\\kv72-R213QW-mutations\\cal2.mod\n"
  ": Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M, Cilio MR, Taglialatela M (2013) Genotype-phenotype\n"
  ": correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits. PNAS 110:4386-4391\n"
  "\n"
  "UNITS {\n"
  "  (mA) = (milliamp)\n"
  "  (mV) = (millivolt)\n"
  "\n"
  "  FARADAY = 96520 (coul)\n"
  "  R = 8.3134 (joule/degC)\n"
  "  KTOMV = .0853 (mV/degC)\n"
  "}\n"
  "\n"
  "PARAMETER {\n"
  "  v (mV)\n"
  "  celsius 	(degC)\n"
  "  gcalbar=.003 (mho/cm2)\n"
  "  ki=.001 (mM)\n"
  "  cai = 50.e-6 (mM)\n"
  "  cao = 2 (mM)\n"
  "  q10 = 5\n"
  "  mmin=0.2\n"
  "  tfa = 1\n"
  "  a0m =0.1\n"
  "  zetam = 2\n"
  "  vhalfm = 4\n"
  "  gmm=0.1	\n"
  "  USEGHK=1\n"
  "  erev = 100\n"
  "}\n"
  "\n"
  "\n"
  "NEURON {\n"
  "  SUFFIX cal\n"
  "  USEION ca READ cai,cao WRITE ica\n"
  "  RANGE gcalbar,cai, ica, gcal, ggk\n"
  "  RANGE minf,tau\n"
  "  GLOBAL USEGHK\n"
  "}\n"
  "\n"
  "STATE {\n"
  "  m\n"
  "}\n"
  "\n"
  "ASSIGNED {\n"
  "  ica (mA/cm2)\n"
  "  gcal (mho/cm2)\n"
  "  minf\n"
  "  tau   (ms)\n"
  "  ggk\n"
  "}\n"
  "\n"
  "INITIAL {\n"
  "  rate(v)\n"
  "  m = minf\n"
  "}\n"
  "\n"
  "BREAKPOINT {\n"
  "  SOLVE state METHOD cnexp\n"
  "  gcal = gcalbar*m*m*h2(cai)\n"
  "  if (USEGHK == 1) {\n"
  "    ggk=ghk(v,cai,cao)\n"
  "  } else {\n"
  "    ggk=v-erev\n"
  "  }\n"
  "  ica = gcal*ggk\n"
  "}\n"
  "\n"
  "FUNCTION h2(cai(mM)) {\n"
  "  h2 = ki/(ki+cai)\n"
  "}\n"
  "\n"
  "\n"
  "FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {\n"
  "  LOCAL nu,f\n"
  "  f = KTF(celsius)/2\n"
  "  nu = v/f\n"
  "  ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)\n"
  "}\n"
  "\n"
  "FUNCTION KTF(celsius (DegC)) (mV) {\n"
  "  KTF = ((25./293.15)*(celsius + 273.15))\n"
  "}\n"
  "\n"
  "\n"
  "FUNCTION efun(z) {\n"
  "  if (fabs(z) < 1e-4) {\n"
  "    efun = 1 - z/2\n"
  "  }else{\n"
  "    efun = z/(exp(z) - 1)\n"
  "  }\n"
  "}\n"
  "\n"
  "FUNCTION alp(v(mV)) (1/ms) {\n"
  "  alp = 15.69*(-1.0*v+81.5)/(exp((-1.0*v+81.5)/10.0)-1.0)\n"
  "}\n"
  "\n"
  "FUNCTION bet(v(mV)) (1/ms) {\n"
  "  bet = 0.29*exp(-v/10.86)\n"
  "}\n"
  "\n"
  "FUNCTION alpmt(v(mV)) {\n"
  "  alpmt = exp(0.0378*zetam*(v-vhalfm)) \n"
  "}\n"
  "\n"
  "FUNCTION betmt(v(mV)) {\n"
  "  betmt = exp(0.0378*zetam*gmm*(v-vhalfm)) \n"
  "}\n"
  "\n"
  "DERIVATIVE state {  \n"
  "  rate(v)\n"
  "  m' = (minf - m)/tau\n"
  "}\n"
  "\n"
  "PROCEDURE rate(v (mV)) { :callable from hoc\n"
  "  LOCAL a, b, qt\n"
  "  qt=q10^((celsius-25)/10)\n"
  "  a = alp(v)\n"
  "  b = 1/((a + bet(v)))\n"
  "  minf = a*b\n"
  "  tau = betmt(v)/(qt*a0m*(1+alpmt(v)))\n"
  "  if (tau<mmin/qt) {tau=mmin/qt}\n"
  "}\n"
  ;
#endif