/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
 
#if METHOD3
extern int _method3;
#endif

#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
 
#define nrn_init _nrn_init__cancr
#define _nrn_initial _nrn_initial__cancr
#define nrn_cur _nrn_cur__cancr
#define _nrn_current _nrn_current__cancr
#define nrn_jacob _nrn_jacob__cancr
#define nrn_state _nrn_state__cancr
#define _net_receive _net_receive__cancr 
#define rates rates__cancr 
#define states states__cancr 
 
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 static double *_p; static Datum *_ppvar;
 
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define gcabar _p[0]
#define ica _p[1]
#define po _p[2]
#define m _p[3]
#define h _p[4]
#define s _p[5]
#define cai _p[6]
#define eca _p[7]
#define Dm _p[8]
#define Dh _p[9]
#define Ds _p[10]
#define _g _p[11]
#define _ion_cai	*_ppvar[0]._pval
#define _ion_eca	*_ppvar[1]._pval
#define _ion_ica	*_ppvar[2]._pval
#define _ion_dicadv	*_ppvar[3]._pval
 
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
 
#if defined(__cplusplus)
extern "C" {
#endif
 static int hoc_nrnpointerindex =  -1;
 /* external NEURON variables */
 extern double celsius;
 /* declaration of user functions */
 static void _hoc_alph(void);
 static void _hoc_alpm(void);
 static void _hoc_efun(void);
 static void _hoc_ghk(void);
 static void _hoc_h2(void);
 static void _hoc_rates(void);
 static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
 
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif

 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _p = _prop->param; _ppvar = _prop->dparam;
 }
 static void _hoc_setdata() {
 Prop *_prop, *hoc_getdata_range(int);
 _prop = hoc_getdata_range(_mechtype);
   _setdata(_prop);
 hoc_retpushx(1.);
}
 /* connect user functions to hoc names */
 static VoidFunc hoc_intfunc[] = {
 "setdata_cancr", _hoc_setdata,
 "alph_cancr", _hoc_alph,
 "alpm_cancr", _hoc_alpm,
 "efun_cancr", _hoc_efun,
 "ghk_cancr", _hoc_ghk,
 "h2_cancr", _hoc_h2,
 "rates_cancr", _hoc_rates,
 0, 0
};
#define alph alph_cancr
#define alpm alpm_cancr
#define efun efun_cancr
#define ghk ghk_cancr
#define h2 h2_cancr
 extern double alph( double );
 extern double alpm( double );
 extern double efun( double );
 extern double ghk( double , double , double );
 extern double h2( double );
 /* declare global and static user variables */
#define hinf hinf_cancr
 double hinf = 0;
#define ki ki_cancr
 double ki = 0.025;
#define minf minf_cancr
 double minf = 0;
#define s_inf s_inf_cancr
 double s_inf = 0;
#define taumin taumin_cancr
 double taumin = 2;
#define th0 th0_cancr
 double th0 = 75;
#define tm0 tm0_cancr
 double tm0 = 1.5;
#define vhalfh vhalfh_cancr
 double vhalfh = -40;
#define vhalfm vhalfm_cancr
 double vhalfm = -21;
#define zetah zetah_cancr
 double zetah = 2;
#define zetam zetam_cancr
 double zetam = -3.4;
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 0,0,0
};
 static HocParmUnits _hoc_parm_units[] = {
 "ki_cancr", "mM",
 "vhalfm_cancr", "mV",
 "vhalfh_cancr", "mV",
 "tm0_cancr", "ms",
 "th0_cancr", "ms",
 "taumin_cancr", "ms",
 "gcabar_cancr", "mho/cm2",
 "ica_cancr", "mA/cm2",
 0,0
};
 static double delta_t = 0.01;
 static double h0 = 0;
 static double m0 = 0;
 static double s0 = 0;
 static double v = 0;
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 "ki_cancr", &ki_cancr,
 "zetam_cancr", &zetam_cancr,
 "zetah_cancr", &zetah_cancr,
 "vhalfm_cancr", &vhalfm_cancr,
 "vhalfh_cancr", &vhalfh_cancr,
 "tm0_cancr", &tm0_cancr,
 "th0_cancr", &th0_cancr,
 "taumin_cancr", &taumin_cancr,
 "minf_cancr", &minf_cancr,
 "hinf_cancr", &hinf_cancr,
 "s_inf_cancr", &s_inf_cancr,
 0,0
};
 static DoubVec hoc_vdoub[] = {
 0,0,0
};
 static double _sav_indep;
 static void nrn_alloc(Prop*);
static void  nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
 static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void  nrn_jacob(_NrnThread*, _Memb_list*, int);
 
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
 
#define _cvode_ieq _ppvar[4]._i
 static void _ode_matsol_instance1(_threadargsproto_);
 /* connect range variables in _p that hoc is supposed to know about */
 static const char *_mechanism[] = {
 "7.7.0",
"cancr",
 "gcabar_cancr",
 0,
 "ica_cancr",
 "po_cancr",
 0,
 "m_cancr",
 "h_cancr",
 "s_cancr",
 0,
 0};
 static Symbol* _ca_sym;
 
extern Prop* need_memb(Symbol*);

static void nrn_alloc(Prop* _prop) {
	Prop *prop_ion;
	double *_p; Datum *_ppvar;
 	_p = nrn_prop_data_alloc(_mechtype, 12, _prop);
 	/*initialize range parameters*/
 	gcabar = 0;
 	_prop->param = _p;
 	_prop->param_size = 12;
 	_ppvar = nrn_prop_datum_alloc(_mechtype, 5, _prop);
 	_prop->dparam = _ppvar;
 	/*connect ionic variables to this model*/
 prop_ion = need_memb(_ca_sym);
 nrn_promote(prop_ion, 1, 1);
 	_ppvar[0]._pval = &prop_ion->param[1]; /* cai */
 	_ppvar[1]._pval = &prop_ion->param[0]; /* eca */
 	_ppvar[2]._pval = &prop_ion->param[3]; /* ica */
 	_ppvar[3]._pval = &prop_ion->param[4]; /* _ion_dicadv */
 
}
 static void _initlists();
  /* some states have an absolute tolerance */
 static Symbol** _atollist;
 static HocStateTolerance _hoc_state_tol[] = {
 0,0
};
 static void _update_ion_pointer(Datum*);
 extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);

 void _cancr_reg() {
	int _vectorized = 0;
  _initlists();
 	ion_reg("ca", -10000.);
 	_ca_sym = hoc_lookup("ca_ion");
 	register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
     _nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
 #if NMODL_TEXT
  hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
  hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
  hoc_register_prop_size(_mechtype, 12, 5);
  hoc_register_dparam_semantics(_mechtype, 0, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 1, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 2, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 3, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 4, "cvodeieq");
 	hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
 	hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 cancr /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/cancr.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
 }
 
#define FARADAY _nrnunit_FARADAY[_nrnunit_use_legacy_]
static double _nrnunit_FARADAY[2] = {0x1.78e555060882cp+16, 96485.3}; /* 96485.3321233100141 */
 
#define R _nrnunit_R[_nrnunit_use_legacy_]
static double _nrnunit_R[2] = {0x1.0a1013e8990bep+3, 8.3145}; /* 8.3144626181532395 */
static int _reset;
static char *modelname = "N-type calcium channel ";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rates(double, double);
 
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
 static int _slist1[3], _dlist1[3];
 static int states(_threadargsproto_);
 
double h2 (  double _lcai ) {
   double _lh2;
 _lh2 = ki / ( ki + _lcai ) ;
   
return _lh2;
 }
 
static void _hoc_h2(void) {
  double _r;
   _r =  h2 (  *getarg(1) );
 hoc_retpushx(_r);
}
 
double ghk (  double _lv , double _lci , double _lco ) {
   double _lghk;
 double _lz , _leci , _leco ;
 _lz = ( 1e-3 ) * 2.0 * FARADAY * _lv / ( R * ( celsius + 273.15 ) ) ;
   _leco = _lco * efun ( _threadargscomma_ _lz ) ;
   _leci = _lci * efun ( _threadargscomma_ - _lz ) ;
   _lghk = ( .001 ) * 2.0 * FARADAY * ( _leci - _leco ) ;
   
return _lghk;
 }
 
static void _hoc_ghk(void) {
  double _r;
   _r =  ghk (  *getarg(1) , *getarg(2) , *getarg(3) );
 hoc_retpushx(_r);
}
 
double efun (  double _lz ) {
   double _lefun;
 if ( fabs ( _lz ) < 1e-4 ) {
     _lefun = 1.0 - _lz / 2.0 ;
     }
   else {
     _lefun = _lz / ( exp ( _lz ) - 1.0 ) ;
     }
   
return _lefun;
 }
 
static void _hoc_efun(void) {
  double _r;
   _r =  efun (  *getarg(1) );
 hoc_retpushx(_r);
}
 
/*CVODE*/
 static int _ode_spec1 () {_reset=0;
 {
   rates ( _threadargscomma_ v , cai ) ;
   Dm = ( minf - m ) / tm0 ;
   Dh = ( hinf - h ) / th0 ;
   Ds = ( s_inf - s ) / taumin ;
   }
 return _reset;
}
 static int _ode_matsol1 () {
 rates ( _threadargscomma_ v , cai ) ;
 Dm = Dm  / (1. - dt*( ( ( ( - 1.0 ) ) ) / tm0 )) ;
 Dh = Dh  / (1. - dt*( ( ( ( - 1.0 ) ) ) / th0 )) ;
 Ds = Ds  / (1. - dt*( ( ( ( - 1.0 ) ) ) / taumin )) ;
  return 0;
}
 /*END CVODE*/
 static int states () {_reset=0;
 {
   rates ( _threadargscomma_ v , cai ) ;
    m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tm0)))*(- ( ( ( minf ) ) / tm0 ) / ( ( ( ( - 1.0 ) ) ) / tm0 ) - m) ;
    h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / th0)))*(- ( ( ( hinf ) ) / th0 ) / ( ( ( ( - 1.0 ) ) ) / th0 ) - h) ;
    s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / taumin)))*(- ( ( ( s_inf ) ) / taumin ) / ( ( ( ( - 1.0 ) ) ) / taumin ) - s) ;
   }
  return 0;
}
 
static int  rates (  double _lv , double _lcai ) {
   double _la , _lb , _lalpha2 ;
 _la = alpm ( _threadargscomma_ _lv ) ;
   minf = 1.0 / ( 1.0 + _la ) ;
   _lb = alph ( _threadargscomma_ _lv ) ;
   hinf = 1.0 / ( 1.0 + _lb ) ;
   _lalpha2 = pow( ( ki / _lcai ) , 2.0 ) ;
   s_inf = _lalpha2 / ( _lalpha2 + 1.0 ) ;
    return 0; }
 
static void _hoc_rates(void) {
  double _r;
   _r = 1.;
 rates (  *getarg(1) , *getarg(2) );
 hoc_retpushx(_r);
}
 
double alpm (  double _lv ) {
   double _lalpm;
  _lalpm = exp ( 1.e-3 * zetam * ( _lv - vhalfm ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
    
return _lalpm;
 }
 
static void _hoc_alpm(void) {
  double _r;
   _r =  alpm (  *getarg(1) );
 hoc_retpushx(_r);
}
 
double alph (  double _lv ) {
   double _lalph;
  _lalph = exp ( 1.e-3 * zetah * ( _lv - vhalfh ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
    
return _lalph;
 }
 
static void _hoc_alph(void) {
  double _r;
   _r =  alph (  *getarg(1) );
 hoc_retpushx(_r);
}
 
static int _ode_count(int _type){ return 3;}
 
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  cai = _ion_cai;
  eca = _ion_eca;
     _ode_spec1 ();
  }}
 
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { 
 	int _i; _p = _pp; _ppvar = _ppd;
	_cvode_ieq = _ieq;
	for (_i=0; _i < 3; ++_i) {
		_pv[_i] = _pp + _slist1[_i];  _pvdot[_i] = _pp + _dlist1[_i];
		_cvode_abstol(_atollist, _atol, _i);
	}
 }
 
static void _ode_matsol_instance1(_threadargsproto_) {
 _ode_matsol1 ();
 }
 
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  cai = _ion_cai;
  eca = _ion_eca;
 _ode_matsol_instance1(_threadargs_);
 }}
 extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
 static void _update_ion_pointer(Datum* _ppvar) {
   nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 1);
   nrn_update_ion_pointer(_ca_sym, _ppvar, 1, 0);
   nrn_update_ion_pointer(_ca_sym, _ppvar, 2, 3);
   nrn_update_ion_pointer(_ca_sym, _ppvar, 3, 4);
 }

static void initmodel() {
  int _i; double _save;_ninits++;
 _save = t;
 t = 0.0;
{
  h = h0;
  m = m0;
  s = s0;
 {
   rates ( _threadargscomma_ v , cai ) ;
   m = minf ;
   h = hinf ;
   s = s_inf ;
   }
  _sav_indep = t; t = _save;

}
}

static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v = _v;
  cai = _ion_cai;
  eca = _ion_eca;
 initmodel();
 }}

static double _nrn_current(double _v){double _current=0.;v=_v;{ {
   po = m * m * h ;
   ica = gcabar * po * h2 ( _threadargscomma_ cai ) * ( v - eca ) ;
   }
 _current += ica;

} return _current;
}

static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
  cai = _ion_cai;
  eca = _ion_eca;
 _g = _nrn_current(_v + .001);
 	{ double _dica;
  _dica = ica;
 _rhs = _nrn_current(_v);
  _ion_dicadv += (_dica - ica)/.001 ;
 	}
 _g = (_g - _rhs)/.001;
  _ion_ica += ica ;
#if CACHEVEC
  if (use_cachevec) {
	VEC_RHS(_ni[_iml]) -= _rhs;
  }else
#endif
  {
	NODERHS(_nd) -= _rhs;
  }
 
}}

static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml];
#if CACHEVEC
  if (use_cachevec) {
	VEC_D(_ni[_iml]) += _g;
  }else
#endif
  {
     _nd = _ml->_nodelist[_iml];
	NODED(_nd) += _g;
  }
 
}}

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v=_v;
{
  cai = _ion_cai;
  eca = _ion_eca;
 { error =  states();
 if(error){fprintf(stderr,"at line 69 in file cancr.mod:\n	SOLVE states METHOD cnexp\n"); nrn_complain(_p); abort_run(error);}
 } }}

}

static void terminal(){}

static void _initlists() {
 int _i; static int _first = 1;
  if (!_first) return;
 _slist1[0] = &(m) - _p;  _dlist1[0] = &(Dm) - _p;
 _slist1[1] = &(h) - _p;  _dlist1[1] = &(Dh) - _p;
 _slist1[2] = &(s) - _p;  _dlist1[2] = &(Ds) - _p;
_first = 0;
}

#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/cancr.mod";
static const char* nmodl_file_text = 
  "TITLE N-type calcium channel \n"
  ": used in somatic and dendritic regions \n"
  ": After Borg \n"
  ": Updated by Maria Markaki  03/12/03\n"
  "\n"
  "NEURON {\n"
  "	SUFFIX cancr\n"
  "	USEION ca READ cai, eca WRITE ica \n"
  "    RANGE gcabar, ica, po\n"
  "	GLOBAL hinf, minf, s_inf\n"
  "}\n"
  "\n"
  "UNITS {\n"
  "	(mA)    = (milliamp)\n"
  "	(mV)    = (millivolt)\n"
  "	(molar) = (1/liter)\n"
  "	(mM)    =	(millimolar)\n"
  "	FARADAY = (faraday) (coulomb)\n"
  "	R       = (k-mole) (joule/degC)\n"
  "}\n"
  "\n"
  "PARAMETER {           :parameters that can be entered when function is called in cell-setup \n"
  "	gcabar = 0      (mho/cm2)  : initialized conductance\n"
  "  	ki     = 0.025  (mM)            :test middle point of inactivation fct\n"
  "	zetam  = -3.4\n"
  "	zetah  = 2\n"
  "	vhalfm = -21    (mV)\n"
  "	vhalfh = -40    (mV)\n"
  "	tm0    = 1.5    (ms)\n"
  "	th0    = 75     (ms)\n"
  "	taumin = 2      (ms)            : minimal value of the time cst\n"
  "}\n"
  "\n"
  "\n"
  "\n"
  "ASSIGNED {     : parameters needed to solve DE\n"
  "	v            (mV)\n"
  "	celsius      (degC)\n"
  "	ica          (mA/cm2)\n"
  "	po\n"
  "	cai          (mM)       :5e-5 initial internal Ca++ concentration\n"
  "	eca          (mV)\n"
  "    minf\n"
  "    hinf\n"
  "	s_inf\n"
  "}\n"
  "\n"
  "\n"
  "FUNCTION h2(cai(mM)) {\n"
  "	h2 = ki/(ki+cai)\n"
  "}\n"
  "\n"
  "\n"
  "\n"
  "STATE {	\n"
  "	m \n"
  "	h \n"
  "	s\n"
  "}  \n"
  "\n"
  "INITIAL {\n"
  "	rates(v,cai)\n"
  "    m = minf\n"
  "    h = hinf\n"
  "	s = s_inf\n"
  "}\n"
  "\n"
  "BREAKPOINT {\n"
  "	SOLVE states METHOD cnexp\n"
  "	po = m*m*h\n"
  " 	ica = gcabar *po*h2(cai) * (v - eca)\n"
  "\n"
  "}\n"
  "\n"
  "\n"
  "FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) {\n"
  "	LOCAL z, eci, eco\n"
  "	z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))\n"
  "	eco = co*efun(z)\n"
  "	eci = ci*efun(-z)\n"
  "	:high cao charge moves inward\n"
  "	:negative potential charge moves inward\n"
  "	ghk = (.001)*2*FARADAY*(eci - eco)\n"
  "}\n"
  "\n"
  "FUNCTION efun(z) {\n"
  "	if (fabs(z) < 1e-4) {\n"
  "		efun = 1 - z/2\n"
  "	}else{\n"
  "		efun = z/(exp(z) - 1)\n"
  "	}\n"
  "}\n"
  "\n"
  "DERIVATIVE states {\n"
  "	rates(v,cai)\n"
  "	m' = (minf -m)/tm0\n"
  "	h'=  (hinf - h)/th0\n"
  "	s' = (s_inf-s)/taumin\n"
  "}\n"
  "\n"
  "\n"
  "\n"
  "PROCEDURE rates(v (mV), cai(mM)) { \n"
  "    \n"
  "    LOCAL a, b, alpha2\n"
  "        \n"
  "	a = alpm(v)\n"
  "	minf = 1/(1+a)\n"
  "        \n"
  "    b = alph(v)\n"
  "	hinf = 1/(1+b)\n"
  "	\n"
  "	alpha2 = (ki/cai)^2\n"
  "	s_inf = alpha2 / (alpha2 + 1)\n"
  "}\n"
  "\n"
  "\n"
  "\n"
  "\n"
  "FUNCTION alpm(v(mV)) {\n"
  "UNITSOFF\n"
  "  alpm = exp(1.e-3*zetam*(v-vhalfm)*9.648e4/(8.315*(273.16+celsius))) \n"
  "UNITSON\n"
  "}\n"
  "\n"
  "FUNCTION alph(v(mV)) {\n"
  "UNITSOFF\n"
  "  alph = exp(1.e-3*zetah*(v-vhalfh)*9.648e4/(8.315*(273.16+celsius))) \n"
  "UNITSON\n"
  "}\n"
  "\n"
  "\n"
  "\n"
  "\n"
  "\n"
  "\n"
  "\n"
  ;
#endif