/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__catcb
#define _nrn_initial _nrn_initial__catcb
#define nrn_cur _nrn_cur__catcb
#define _nrn_current _nrn_current__catcb
#define nrn_jacob _nrn_jacob__catcb
#define nrn_state _nrn_state__catcb
#define _net_receive _net_receive__catcb
#define rates rates__catcb
#define states states__catcb
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define gcatbar _p[0]
#define ica _p[1]
#define m _p[2]
#define h _p[3]
#define cai _p[4]
#define eca _p[5]
#define Dm _p[6]
#define Dh _p[7]
#define _g _p[8]
#define _ion_cai *_ppvar[0]._pval
#define _ion_eca *_ppvar[1]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_alph(void);
static void _hoc_alpm(void);
static void _hoc_efun(void);
static void _hoc_ghk(void);
static void _hoc_rates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_p = _prop->param; _ppvar = _prop->dparam;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_catcb", _hoc_setdata,
"alph_catcb", _hoc_alph,
"alpm_catcb", _hoc_alpm,
"efun_catcb", _hoc_efun,
"ghk_catcb", _hoc_ghk,
"rates_catcb", _hoc_rates,
0, 0
};
#define alph alph_catcb
#define alpm alpm_catcb
#define efun efun_catcb
#define ghk ghk_catcb
extern double alph( double );
extern double alpm( double );
extern double efun( double );
extern double ghk( double , double , double );
/* declare global and static user variables */
#define hinf hinf_catcb
double hinf = 0;
#define minf minf_catcb
double minf = 0;
#define th0 th0_catcb
double th0 = 10;
#define tm0 tm0_catcb
double tm0 = 1.5;
#define vhalfh vhalfh_catcb
double vhalfh = -68;
#define vhalfm vhalfm_catcb
double vhalfm = -36;
#define zetah zetah_catcb
double zetah = 5.2;
#define zetam zetam_catcb
double zetam = -3;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"vhalfm_catcb", "mV",
"vhalfh_catcb", "mV",
"tm0_catcb", "ms",
"th0_catcb", "ms",
"gcatbar_catcb", "mho/cm2",
"ica_catcb", "mA/cm2",
0,0
};
static double delta_t = 0.01;
static double h0 = 0;
static double m0 = 0;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"zetam_catcb", &zetam_catcb,
"zetah_catcb", &zetah_catcb,
"vhalfm_catcb", &vhalfm_catcb,
"vhalfh_catcb", &vhalfh_catcb,
"tm0_catcb", &tm0_catcb,
"th0_catcb", &th0_catcb,
"minf_catcb", &minf_catcb,
"hinf_catcb", &hinf_catcb,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[2]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"catcb",
"gcatbar_catcb",
0,
"ica_catcb",
0,
"m_catcb",
"h_catcb",
0,
0};
static Symbol* _ca_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 9, _prop);
/*initialize range parameters*/
gcatbar = 0;
_prop->param = _p;
_prop->param_size = 9;
_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 1, 1);
_ppvar[0]._pval = &prop_ion->param[1]; /* cai */
_ppvar[1]._pval = &prop_ion->param[0]; /* eca */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _catcb_reg() {
int _vectorized = 0;
_initlists();
ion_reg("ca", -10000.);
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 9, 3);
hoc_register_dparam_semantics(_mechtype, 0, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 1, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 2, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 catcb /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/catcb.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
#define FARADAY _nrnunit_FARADAY[_nrnunit_use_legacy_]
static double _nrnunit_FARADAY[2] = {0x1.78e555060882cp+16, 96485.3}; /* 96485.3321233100141 */
#define R _nrnunit_R[_nrnunit_use_legacy_]
static double _nrnunit_R[2] = {0x1.0a1013e8990bep+3, 8.3145}; /* 8.3144626181532395 */
static int _reset;
static char *modelname = "t-type calcium channel with high threshold for activation";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rates(double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[2], _dlist1[2];
static int states(_threadargsproto_);
double ghk ( double _lv , double _lci , double _lco ) {
double _lghk;
double _lz , _leci , _leco ;
_lz = ( 1e-3 ) * 2.0 * FARADAY * _lv / ( R * ( celsius + 273.15 ) ) ;
_leco = _lco * efun ( _threadargscomma_ _lz ) ;
_leci = _lci * efun ( _threadargscomma_ - _lz ) ;
_lghk = ( .001 ) * 2.0 * FARADAY * ( _leci - _leco ) ;
return _lghk;
}
static void _hoc_ghk(void) {
double _r;
_r = ghk ( *getarg(1) , *getarg(2) , *getarg(3) );
hoc_retpushx(_r);
}
double efun ( double _lz ) {
double _lefun;
if ( fabs ( _lz ) < 1e-4 ) {
_lefun = 1.0 - _lz / 2.0 ;
}
else {
_lefun = _lz / ( exp ( _lz ) - 1.0 ) ;
}
return _lefun;
}
static void _hoc_efun(void) {
double _r;
_r = efun ( *getarg(1) );
hoc_retpushx(_r);
}
/*CVODE*/
static int _ode_spec1 () {_reset=0;
{
rates ( _threadargscomma_ v ) ;
Dm = ( minf - m ) / tm0 ;
Dh = ( hinf - h ) / th0 ;
}
return _reset;
}
static int _ode_matsol1 () {
rates ( _threadargscomma_ v ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / tm0 )) ;
Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / th0 )) ;
return 0;
}
/*END CVODE*/
static int states () {_reset=0;
{
rates ( _threadargscomma_ v ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tm0)))*(- ( ( ( minf ) ) / tm0 ) / ( ( ( ( - 1.0 ) ) ) / tm0 ) - m) ;
h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / th0)))*(- ( ( ( hinf ) ) / th0 ) / ( ( ( ( - 1.0 ) ) ) / th0 ) - h) ;
}
return 0;
}
static int rates ( double _lv ) {
double _la , _lb ;
_la = alpm ( _threadargscomma_ _lv ) ;
minf = 1.0 / ( 1.0 + _la ) ;
_lb = alph ( _threadargscomma_ _lv ) ;
hinf = 1.0 / ( 1.0 + _lb ) ;
return 0; }
static void _hoc_rates(void) {
double _r;
_r = 1.;
rates ( *getarg(1) );
hoc_retpushx(_r);
}
double alpm ( double _lv ) {
double _lalpm;
_lalpm = exp ( 1.e-3 * zetam * ( _lv - vhalfm ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
return _lalpm;
}
static void _hoc_alpm(void) {
double _r;
_r = alpm ( *getarg(1) );
hoc_retpushx(_r);
}
double alph ( double _lv ) {
double _lalph;
_lalph = exp ( 1.e-3 * zetah * ( _lv - vhalfh ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
return _lalph;
}
static void _hoc_alph(void) {
double _r;
_r = alph ( *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 2;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
eca = _ion_eca;
_ode_spec1 ();
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 2; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 ();
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
eca = _ion_eca;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 1);
nrn_update_ion_pointer(_ca_sym, _ppvar, 1, 0);
}
static void initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
h = h0;
m = m0;
{
rates ( _threadargscomma_ v ) ;
m = minf ;
h = hinf ;
}
_sav_indep = t; t = _save;
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
cai = _ion_cai;
eca = _ion_eca;
initmodel();
}}
static double _nrn_current(double _v){double _current=0.;v=_v;{
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
cai = _ion_cai;
eca = _ion_eca;
{ error = states();
if(error){fprintf(stderr,"at line 58 in file catcb.mod:\n SOLVE states METHOD cnexp\n"); nrn_complain(_p); abort_run(error);}
} {
ica = gcatbar * m * m * h * ( v - eca ) ;
}
}}
}
static void terminal(){}
static void _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_slist1[1] = &(h) - _p; _dlist1[1] = &(Dh) - _p;
_first = 0;
}
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/catcb.mod";
static const char* nmodl_file_text =
"TITLE t-type calcium channel with high threshold for activation\n"
": used in somatic and dendritic regions \n"
": Updated to use CVode --Carl Gold 08/10/03\n"
"\n"
"\n"
"NEURON {\n"
" SUFFIX catcb\n"
" USEION ca READ cai, eca \n"
" RANGE gcatbar, iCa\n"
" RANGE gcatbar, ica\n"
" GLOBAL hinf, minf\n"
"}\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
" (molar) = (1/liter)\n"
" (mM) = (millimolar)\n"
" FARADAY = (faraday) (coulomb)\n"
" R = (k-mole) (joule/degC)\n"
"}\n"
"\n"
"PARAMETER { \n"
" gcatbar = 0 (mho/cm2) \n"
" zetam = -3\n"
" zetah = 5.2\n"
" vhalfm =-36 (mV)\n"
" vhalfh =-68 (mV)\n"
" tm0=1.5(ms)\n"
" th0=10(ms)\n"
"}\n"
"\n"
"\n"
"\n"
"ASSIGNED { : parameters needed to solve DE\n"
" v (mV)\n"
" celsius (degC)\n"
" ica (mA/cm2)\n"
" cai (mM) \n"
" eca (mV) \n"
" minf\n"
" hinf\n"
"}\n"
"\n"
"\n"
"STATE { \n"
" m \n"
" h \n"
"} \n"
"\n"
"INITIAL {\n"
" rates(v)\n"
" m = minf\n"
" h = hinf\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" ica = gcatbar*m*m*h*(v-eca) \n"
"}\n"
"\n"
"FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) {\n"
" LOCAL z, eci, eco\n"
" z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))\n"
" eco = co*efun(z)\n"
" eci = ci*efun(-z)\n"
" ghk = (.001)*2*FARADAY*(eci - eco)\n"
"}\n"
"\n"
"FUNCTION efun(z) {\n"
" if (fabs(z) < 1e-4) {\n"
" efun = 1 - z/2\n"
" }else{\n"
" efun = z/(exp(z) - 1)\n"
" }\n"
"}\n"
"\n"
"\n"
"DERIVATIVE states {\n"
" rates(v)\n"
" m' = (minf -m)/tm0\n"
" h'= (hinf - h)/th0\n"
"}\n"
"\n"
"\n"
"PROCEDURE rates(v (mV)) { \n"
" LOCAL a, b\n"
" \n"
" a = alpm(v)\n"
" minf = 1/(1+a)\n"
" \n"
" b = alph(v)\n"
" hinf = 1/(1+b)\n"
"}\n"
"\n"
"\n"
"\n"
"FUNCTION alpm(v(mV)) {\n"
"UNITSOFF\n"
" alpm = exp(1.e-3*zetam*(v-vhalfm)*9.648e4/(8.315*(273.16+celsius))) \n"
"UNITSON\n"
"}\n"
"\n"
"FUNCTION alph(v(mV)) {\n"
"UNITSOFF\n"
" alph = exp(1.e-3*zetah*(v-vhalfh)*9.648e4/(8.315*(273.16+celsius))) \n"
"UNITSON\n"
"}\n"
"\n"
;
#endif