/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__ch_Kdrfastngf
#define _nrn_initial _nrn_initial__ch_Kdrfastngf
#define nrn_cur _nrn_cur__ch_Kdrfastngf
#define _nrn_current _nrn_current__ch_Kdrfastngf
#define nrn_jacob _nrn_jacob__ch_Kdrfastngf
#define nrn_state _nrn_state__ch_Kdrfastngf
#define _net_receive _net_receive__ch_Kdrfastngf
#define _f_trates _f_trates__ch_Kdrfastngf
#define rates rates__ch_Kdrfastngf
#define states states__ch_Kdrfastngf
#define trates trates__ch_Kdrfastngf
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define gmax _p[0]
#define offset5 _p[1]
#define offset6 _p[2]
#define slope5 _p[3]
#define slope6 _p[4]
#define g _p[5]
#define ik _p[6]
#define ninf _p[7]
#define ntau _p[8]
#define myi _p[9]
#define n _p[10]
#define Dn _p[11]
#define nexp _p[12]
#define ek _p[13]
#define _g _p[14]
#define _ion_ek *_ppvar[0]._pval
#define _ion_ik *_ppvar[1]._pval
#define _ion_dikdv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_rates(void);
static void _hoc_states(void);
static void _hoc_trates(void);
static void _hoc_vtrap(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_p = _prop->param; _ppvar = _prop->dparam;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_ch_Kdrfastngf", _hoc_setdata,
"rates_ch_Kdrfastngf", _hoc_rates,
"states_ch_Kdrfastngf", _hoc_states,
"trates_ch_Kdrfastngf", _hoc_trates,
"vtrap_ch_Kdrfastngf", _hoc_vtrap,
0, 0
};
#define vtrap vtrap_ch_Kdrfastngf
extern double vtrap( double , double );
/* declare global and static user variables */
#define usetable usetable_ch_Kdrfastngf
double usetable = 1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"usetable_ch_Kdrfastngf", 0, 1,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"gmax_ch_Kdrfastngf", "mho/cm2",
"offset5_ch_Kdrfastngf", "mV",
"offset6_ch_Kdrfastngf", "mv",
"slope5_ch_Kdrfastngf", "1",
"slope6_ch_Kdrfastngf", "1",
"g_ch_Kdrfastngf", "mho/cm2",
"ik_ch_Kdrfastngf", "mA/cm2",
"ntau_ch_Kdrfastngf", "ms",
"myi_ch_Kdrfastngf", "mA/cm2",
0,0
};
static double delta_t = 0.01;
static double n0 = 0;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"usetable_ch_Kdrfastngf", &usetable_ch_Kdrfastngf,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"ch_Kdrfastngf",
"gmax_ch_Kdrfastngf",
"offset5_ch_Kdrfastngf",
"offset6_ch_Kdrfastngf",
"slope5_ch_Kdrfastngf",
"slope6_ch_Kdrfastngf",
0,
"g_ch_Kdrfastngf",
"ik_ch_Kdrfastngf",
"ninf_ch_Kdrfastngf",
"ntau_ch_Kdrfastngf",
"myi_ch_Kdrfastngf",
0,
"n_ch_Kdrfastngf",
0,
0};
static Symbol* _k_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 15, _prop);
/*initialize range parameters*/
gmax = 0;
offset5 = 10;
offset6 = 10;
slope5 = 0.07;
slope6 = 0.264;
_prop->param = _p;
_prop->param_size = 15;
_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_k_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ek */
_ppvar[1]._pval = &prop_ion->param[3]; /* ik */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dikdv */
}
static void _initlists();
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _ch_Kdrfastngf_reg() {
int _vectorized = 0;
_initlists();
ion_reg("k", 1.0);
_k_sym = hoc_lookup("k_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 15, 3);
hoc_register_dparam_semantics(_mechtype, 0, "k_ion");
hoc_register_dparam_semantics(_mechtype, 1, "k_ion");
hoc_register_dparam_semantics(_mechtype, 2, "k_ion");
hoc_register_cvode(_mechtype, _ode_count, 0, 0, 0);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 ch_Kdrfastngf /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/ch_Kdrfastngf.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double FARADAY = 96520.0;
static double R = 8.3134;
static double _zq10 ;
static double *_t_ninf;
static double *_t_nexp;
static double *_t_ntau;
static int _reset;
static char *modelname = "Fast delayed rectifier potassium channel (voltage dependent, for neurogliaform family)";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _f_trates(double);
static int rates(double);
static int states();
static int trates(double);
static void _n_trates(double);
/*VERBATIM*/
#include <stdlib.h> /* Include this library so that the following
(innocuous) warning does not appear:
In function '_thread_cleanup':
warning: incompatible implicit declaration of
built-in function 'free' */
static int states ( ) {
trates ( _threadargscomma_ v ) ;
n = n + nexp * ( ninf - n ) ;
return 0; }
static void _hoc_states(void) {
double _r;
_r = 1.;
states ( );
hoc_retpushx(_r);
}
static int rates ( double _lv ) {
double _lalpha , _lbeta , _lsum , _ltinc ;
_zq10 = pow( 3.0 , ( ( celsius - 34.0 ) / 10.0 ) ) ;
_lalpha = - 1.0 * slope5 * vtrap ( _threadargscomma_ ( _lv + 65.0 - 47.0 - offset5 ) , - 6.0 ) ;
_lbeta = slope6 / exp ( ( _lv + 65.0 - 22.0 - offset6 ) / 40.0 ) ;
_lsum = _lalpha + _lbeta ;
ntau = 1.0 / _lsum ;
ninf = _lalpha / _lsum ;
_ltinc = - dt * _zq10 ;
nexp = 1.0 - exp ( _ltinc / ntau ) ;
return 0; }
static void _hoc_rates(void) {
double _r;
_r = 1.;
rates ( *getarg(1) );
hoc_retpushx(_r);
}
static double _mfac_trates, _tmin_trates;
static void _check_trates();
static void _check_trates() {
static int _maktable=1; int _i, _j, _ix = 0;
double _xi, _tmax;
static double _sav_dt;
static double _sav_celsius;
static double _sav_slope5;
static double _sav_slope6;
static double _sav_offset5;
static double _sav_offset6;
if (!usetable) {return;}
if (_sav_dt != dt) { _maktable = 1;}
if (_sav_celsius != celsius) { _maktable = 1;}
if (_sav_slope5 != slope5) { _maktable = 1;}
if (_sav_slope6 != slope6) { _maktable = 1;}
if (_sav_offset5 != offset5) { _maktable = 1;}
if (_sav_offset6 != offset6) { _maktable = 1;}
if (_maktable) { double _x, _dx; _maktable=0;
_tmin_trates = - 100.0 ;
_tmax = 100.0 ;
_dx = (_tmax - _tmin_trates)/200.; _mfac_trates = 1./_dx;
for (_i=0, _x=_tmin_trates; _i < 201; _x += _dx, _i++) {
_f_trates(_x);
_t_ninf[_i] = ninf;
_t_nexp[_i] = nexp;
_t_ntau[_i] = ntau;
}
_sav_dt = dt;
_sav_celsius = celsius;
_sav_slope5 = slope5;
_sav_slope6 = slope6;
_sav_offset5 = offset5;
_sav_offset6 = offset6;
}
}
static int trates(double _lv){ _check_trates();
_n_trates(_lv);
return 0;
}
static void _n_trates(double _lv){ int _i, _j;
double _xi, _theta;
if (!usetable) {
_f_trates(_lv); return;
}
_xi = _mfac_trates * (_lv - _tmin_trates);
if (isnan(_xi)) {
ninf = _xi;
nexp = _xi;
ntau = _xi;
return;
}
if (_xi <= 0.) {
ninf = _t_ninf[0];
nexp = _t_nexp[0];
ntau = _t_ntau[0];
return; }
if (_xi >= 200.) {
ninf = _t_ninf[200];
nexp = _t_nexp[200];
ntau = _t_ntau[200];
return; }
_i = (int) _xi;
_theta = _xi - (double)_i;
ninf = _t_ninf[_i] + _theta*(_t_ninf[_i+1] - _t_ninf[_i]);
nexp = _t_nexp[_i] + _theta*(_t_nexp[_i+1] - _t_nexp[_i]);
ntau = _t_ntau[_i] + _theta*(_t_ntau[_i+1] - _t_ntau[_i]);
}
static int _f_trates ( double _lv ) {
double _ltinc ;
rates ( _threadargscomma_ _lv ) ;
return 0; }
static void _hoc_trates(void) {
double _r;
_r = 1.;
trates ( *getarg(1) );
hoc_retpushx(_r);
}
double vtrap ( double _lx , double _ly ) {
double _lvtrap;
if ( fabs ( _lx / _ly ) < 1e-6 ) {
_lvtrap = _ly * ( 1.0 - _lx / _ly / 2.0 ) ;
}
else {
_lvtrap = _lx / ( exp ( _lx / _ly ) - 1.0 ) ;
}
return _lvtrap;
}
static void _hoc_vtrap(void) {
double _r;
_r = vtrap ( *getarg(1) , *getarg(2) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ hoc_execerror("ch_Kdrfastngf", "cannot be used with CVODE"); return 0;}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_k_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_k_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_k_sym, _ppvar, 2, 4);
}
static void initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
n = n0;
{
trates ( _threadargscomma_ v ) ;
n = ninf ;
}
_sav_indep = t; t = _save;
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ek = _ion_ek;
initmodel();
}}
static double _nrn_current(double _v){double _current=0.;v=_v;{ {
g = gmax * n * n * n * n ;
ik = g * ( v - ek ) ;
myi = ik ;
}
_current += ik;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ek = _ion_ek;
_g = _nrn_current(_v + .001);
{ double _dik;
_dik = ik;
_rhs = _nrn_current(_v);
_ion_dikdv += (_dik - ik)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ik += ik ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ek = _ion_ek;
{ error = states();
if(error){fprintf(stderr,"at line 74 in file ch_Kdrfastngf.mod:\n SOLVE states\n"); nrn_complain(_p); abort_run(error);}
} }}
}
static void terminal(){}
static void _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_t_ninf = makevector(201*sizeof(double));
_t_nexp = makevector(201*sizeof(double));
_t_ntau = makevector(201*sizeof(double));
_first = 0;
}
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/ch_Kdrfastngf.mod";
static const char* nmodl_file_text =
"TITLE Fast delayed rectifier potassium channel (voltage dependent, for neurogliaform family)\n"
"\n"
"COMMENT\n"
"Fast delayed rectifier potassium channel (voltage dependent, for neurogliaform family)\n"
"\n"
"Ions: k\n"
"\n"
"Style: quasi-ohmic\n"
"\n"
"From: Yuen and Durand, 1991 (squid axon)\n"
"\n"
"Updates:\n"
"2014 December (Marianne Bezaire): documented\n"
"? ? (Aradi): shifted the voltage dependence by 16 mV\n"
"ENDCOMMENT\n"
"\n"
"\n"
"VERBATIM\n"
"#include <stdlib.h> /* Include this library so that the following\n"
" (innocuous) warning does not appear:\n"
" In function '_thread_cleanup':\n"
" warning: incompatible implicit declaration of \n"
" built-in function 'free' */\n"
"ENDVERBATIM\n"
" \n"
"UNITS {\n"
" (mA) =(milliamp)\n"
" (mV) =(millivolt)\n"
" (uF) = (microfarad)\n"
" (molar) = (1/liter)\n"
" (nA) = (nanoamp)\n"
" (mM) = (millimolar)\n"
" (um) = (micron)\n"
" FARADAY = 96520 (coul)\n"
" R = 8.3134 (joule/degC)\n"
"}\n"
" \n"
"NEURON { \n"
" SUFFIX ch_Kdrfastngf\n"
" USEION k READ ek WRITE ik VALENCE 1\n"
" RANGE g, gmax, ninf, ntau, ik\n"
" RANGE myi, offset5, offset6, slope5, slope6\n"
" THREADSAFE\n"
"}\n"
" \n"
"PARAMETER {\n"
"\n"
" :ek (mV)\n"
" gmax (mho/cm2)\n"
" offset5=10 (mV)\n"
" offset6=10 (mv)\n"
" slope5=.07 (1)\n"
" slope6=.264 (1)\n"
"}\n"
" \n"
"STATE {\n"
" n \n"
"}\n"
" \n"
"ASSIGNED { \n"
" g (mho/cm2)\n"
" ik (mA/cm2)\n"
" ninf\n"
" ntau (ms)\n"
" nexp\n"
" myi (mA/cm2)\n"
" ek (mV)\n"
" v (mV) \n"
" celsius (degC) : temperature - set in hoc; default is 6.3\n"
" dt (ms) \n"
"} \n"
"\n"
"BREAKPOINT {\n"
" SOLVE states\n"
" g = gmax*n*n*n*n\n"
" ik = g*(v-ek)\n"
" myi = ik\n"
"}\n"
" \n"
"UNITSOFF\n"
" \n"
"INITIAL {\n"
" trates(v)\n"
"\n"
" n = ninf\n"
"}\n"
"\n"
"PROCEDURE states() { :Computes state variables m, h, and n \n"
" trates(v) : at the current v and dt. \n"
" n = n + nexp*(ninf-n)\n"
"}\n"
" \n"
"LOCAL q10\n"
"PROCEDURE rates(v) { :Computes rate and other constants at current v.\n"
" :Call once from HOC to initialize inf at resting v.\n"
" LOCAL alpha, beta, sum, tinc\n"
" :q10 = 3^((celsius - 6.3)/10)\n"
" q10 = 3^((celsius - 34)/10)\n"
"\n"
" :\"nf\" fKDR activation system\n"
" alpha = -1*slope5*vtrap((v+65-47-offset5),-6)\n"
" beta = slope6/exp((v+65-22-offset6)/40)\n"
" sum = alpha+beta \n"
" ntau = 1/sum\n"
" ninf = alpha/sum \n"
" \n"
" tinc = -dt * q10\n"
" nexp = 1 - exp(tinc/ntau)\n"
"}\n"
" \n"
"PROCEDURE trates(v) { :Computes rate and other constants at current v.\n"
" :Call once from HOC to initialize inf at resting v.\n"
" LOCAL tinc\n"
" TABLE ninf, nexp, ntau\n"
" DEPEND dt, celsius, slope5, slope6, offset5, offset6\n"
" FROM -100 TO 100 WITH 200\n"
" \n"
" rates(v) : not consistently executed from here if usetable_hh == 1\n"
" : so don't expect the tau values to be tracking along with\n"
" : the inf values in hoc\n"
"\n"
" :tinc = -dt * q10\n"
" :nexp = 1 - exp(tinc/ntau)\n"
"}\n"
" \n"
"FUNCTION vtrap(x,y) { :Traps for 0 in denominator of rate eqns.\n"
" if (fabs(x/y) < 1e-6) {\n"
" vtrap = y*(1 - x/y/2)\n"
" }else{ \n"
" vtrap = x/(exp(x/y) - 1)\n"
" }\n"
"}\n"
" \n"
"UNITSON\n"
"\n"
"\n"
"\n"
"\n"
"\n"
"\n"
"\n"
;
#endif