/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
 
#if METHOD3
extern int _method3;
#endif

#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
 
#define nrn_init _nrn_init__ch_KvCaB
#define _nrn_initial _nrn_initial__ch_KvCaB
#define nrn_cur _nrn_cur__ch_KvCaB
#define _nrn_current _nrn_current__ch_KvCaB
#define nrn_jacob _nrn_jacob__ch_KvCaB
#define nrn_state _nrn_state__ch_KvCaB
#define _net_receive _net_receive__ch_KvCaB 
#define rate rate__ch_KvCaB 
#define state state__ch_KvCaB 
 
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 static double *_p; static Datum *_ppvar;
 
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define gmax _p[0]
#define ik _p[1]
#define g _p[2]
#define myi _p[3]
#define o _p[4]
#define cai _p[5]
#define ek _p[6]
#define Do _p[7]
#define _g _p[8]
#define _ion_ek	*_ppvar[0]._pval
#define _ion_ik	*_ppvar[1]._pval
#define _ion_dikdv	*_ppvar[2]._pval
#define _ion_cai	*_ppvar[3]._pval
 
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
 
#if defined(__cplusplus)
extern "C" {
#endif
 static int hoc_nrnpointerindex =  -1;
 /* external NEURON variables */
 extern double celsius;
 /* declaration of user functions */
 static void _hoc_alp(void);
 static void _hoc_bet(void);
 static void _hoc_exp1(void);
 static void _hoc_rate(void);
 static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
 
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif

 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _p = _prop->param; _ppvar = _prop->dparam;
 }
 static void _hoc_setdata() {
 Prop *_prop, *hoc_getdata_range(int);
 _prop = hoc_getdata_range(_mechtype);
   _setdata(_prop);
 hoc_retpushx(1.);
}
 /* connect user functions to hoc names */
 static VoidFunc hoc_intfunc[] = {
 "setdata_ch_KvCaB", _hoc_setdata,
 "alp_ch_KvCaB", _hoc_alp,
 "bet_ch_KvCaB", _hoc_bet,
 "exp1_ch_KvCaB", _hoc_exp1,
 "rate_ch_KvCaB", _hoc_rate,
 0, 0
};
#define alp alp_ch_KvCaB
#define bet bet_ch_KvCaB
#define exp1 exp1_ch_KvCaB
 extern double alp( double , double );
 extern double bet( double , double );
 extern double exp1( double , double , double );
 /* declare global and static user variables */
#define abar abar_ch_KvCaB
 double abar = 0.28;
#define bbar bbar_ch_KvCaB
 double bbar = 0.48;
#define d2 d2_ch_KvCaB
 double d2 = 1;
#define d1 d1_ch_KvCaB
 double d1 = 0.84;
#define k2 k2_ch_KvCaB
 double k2 = 1.3e-07;
#define k1 k1_ch_KvCaB
 double k1 = 0.00048;
#define otau otau_ch_KvCaB
 double otau = 0;
#define oinf oinf_ch_KvCaB
 double oinf = 0;
#define st st_ch_KvCaB
 double st = 1;
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 0,0,0
};
 static HocParmUnits _hoc_parm_units[] = {
 "k1_ch_KvCaB", "mM",
 "k2_ch_KvCaB", "mM",
 "abar_ch_KvCaB", "/ms",
 "bbar_ch_KvCaB", "/ms",
 "st_ch_KvCaB", "1",
 "otau_ch_KvCaB", "ms",
 "gmax_ch_KvCaB", "mho/cm2",
 "ik_ch_KvCaB", "mA/cm2",
 "g_ch_KvCaB", "mho/cm2",
 "myi_ch_KvCaB", "mA/cm2",
 0,0
};
 static double delta_t = 0.01;
 static double o0 = 0;
 static double v = 0;
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 "d1_ch_KvCaB", &d1_ch_KvCaB,
 "d2_ch_KvCaB", &d2_ch_KvCaB,
 "k1_ch_KvCaB", &k1_ch_KvCaB,
 "k2_ch_KvCaB", &k2_ch_KvCaB,
 "abar_ch_KvCaB", &abar_ch_KvCaB,
 "bbar_ch_KvCaB", &bbar_ch_KvCaB,
 "st_ch_KvCaB", &st_ch_KvCaB,
 "oinf_ch_KvCaB", &oinf_ch_KvCaB,
 "otau_ch_KvCaB", &otau_ch_KvCaB,
 0,0
};
 static DoubVec hoc_vdoub[] = {
 0,0,0
};
 static double _sav_indep;
 static void nrn_alloc(Prop*);
static void  nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
 static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void  nrn_jacob(_NrnThread*, _Memb_list*, int);
 
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
 
#define _cvode_ieq _ppvar[4]._i
 static void _ode_matsol_instance1(_threadargsproto_);
 /* connect range variables in _p that hoc is supposed to know about */
 static const char *_mechanism[] = {
 "7.7.0",
"ch_KvCaB",
 "gmax_ch_KvCaB",
 0,
 "ik_ch_KvCaB",
 "g_ch_KvCaB",
 "myi_ch_KvCaB",
 0,
 "o_ch_KvCaB",
 0,
 0};
 static Symbol* _k_sym;
 static Symbol* _ca_sym;
 
extern Prop* need_memb(Symbol*);

static void nrn_alloc(Prop* _prop) {
	Prop *prop_ion;
	double *_p; Datum *_ppvar;
 	_p = nrn_prop_data_alloc(_mechtype, 9, _prop);
 	/*initialize range parameters*/
 	gmax = 0.01;
 	_prop->param = _p;
 	_prop->param_size = 9;
 	_ppvar = nrn_prop_datum_alloc(_mechtype, 5, _prop);
 	_prop->dparam = _ppvar;
 	/*connect ionic variables to this model*/
 prop_ion = need_memb(_k_sym);
 nrn_promote(prop_ion, 0, 1);
 	_ppvar[0]._pval = &prop_ion->param[0]; /* ek */
 	_ppvar[1]._pval = &prop_ion->param[3]; /* ik */
 	_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dikdv */
 prop_ion = need_memb(_ca_sym);
 nrn_promote(prop_ion, 1, 0);
 	_ppvar[3]._pval = &prop_ion->param[1]; /* cai */
 
}
 static void _initlists();
  /* some states have an absolute tolerance */
 static Symbol** _atollist;
 static HocStateTolerance _hoc_state_tol[] = {
 0,0
};
 static void _update_ion_pointer(Datum*);
 extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);

 void _ch_KvCaB_reg() {
	int _vectorized = 0;
  _initlists();
 	ion_reg("k", -10000.);
 	ion_reg("ca", 2.0);
 	_k_sym = hoc_lookup("k_ion");
 	_ca_sym = hoc_lookup("ca_ion");
 	register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
     _nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
 #if NMODL_TEXT
  hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
  hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
  hoc_register_prop_size(_mechtype, 9, 5);
  hoc_register_dparam_semantics(_mechtype, 0, "k_ion");
  hoc_register_dparam_semantics(_mechtype, 1, "k_ion");
  hoc_register_dparam_semantics(_mechtype, 2, "k_ion");
  hoc_register_dparam_semantics(_mechtype, 3, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 4, "cvodeieq");
 	hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
 	hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 ch_KvCaB /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/ch_KvCaB.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
 }
 
#define FARADAY _nrnunit_FARADAY[_nrnunit_use_legacy_]
static double _nrnunit_FARADAY[2] = {0x1.81f0fae775425p+6, 96.4853}; /* 96.4853321233100161 */
 static double R = 8.313424;
static int _reset;
static char *modelname = "Calcium activated potassium channel (voltage dependent)";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rate(double, double);
 
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
 static int _slist1[1], _dlist1[1];
 static int state(_threadargsproto_);
 
/*VERBATIM*/
#include <stdlib.h> /* 	Include this library so that the following
						(innocuous) warning does not appear:
						 In function '_thread_cleanup':
						 warning: incompatible implicit declaration of 
						          built-in function 'free'  */
 
/*CVODE*/
 static int _ode_spec1 () {_reset=0;
 {
   rate ( _threadargscomma_ v , cai ) ;
   Do = ( oinf - o ) / otau ;
   }
 return _reset;
}
 static int _ode_matsol1 () {
 rate ( _threadargscomma_ v , cai ) ;
 Do = Do  / (1. - dt*( ( ( ( - 1.0 ) ) ) / otau )) ;
  return 0;
}
 /*END CVODE*/
 static int state () {_reset=0;
 {
   rate ( _threadargscomma_ v , cai ) ;
    o = o + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / otau)))*(- ( ( ( oinf ) ) / otau ) / ( ( ( ( - 1.0 ) ) ) / otau ) - o) ;
   }
  return 0;
}
 
double alp (  double _lv , double _lc ) {
   double _lalp;
 _lalp = _lc * abar / ( _lc + exp1 ( _threadargscomma_ k1 , d1 , _lv ) ) ;
   
return _lalp;
 }
 
static void _hoc_alp(void) {
  double _r;
   _r =  alp (  *getarg(1) , *getarg(2) );
 hoc_retpushx(_r);
}
 
double bet (  double _lv , double _lc ) {
   double _lbet;
 _lbet = bbar / ( 1.0 + _lc / exp1 ( _threadargscomma_ k2 , d2 , _lv ) ) ;
   
return _lbet;
 }
 
static void _hoc_bet(void) {
  double _r;
   _r =  bet (  *getarg(1) , *getarg(2) );
 hoc_retpushx(_r);
}
 
double exp1 (  double _lk , double _ld , double _lv ) {
   double _lexp1;
 _lexp1 = _lk * exp ( - 2.0 * _ld * FARADAY * _lv / R / ( 273.15 + celsius ) ) ;
   
return _lexp1;
 }
 
static void _hoc_exp1(void) {
  double _r;
   _r =  exp1 (  *getarg(1) , *getarg(2) , *getarg(3) );
 hoc_retpushx(_r);
}
 
static int  rate (  double _lv , double _lc ) {
   double _la ;
 _la = alp ( _threadargscomma_ _lv , _lc ) ;
   otau = 1.0 / ( _la + bet ( _threadargscomma_ _lv , _lc ) ) ;
   oinf = _la * otau ;
    return 0; }
 
static void _hoc_rate(void) {
  double _r;
   _r = 1.;
 rate (  *getarg(1) , *getarg(2) );
 hoc_retpushx(_r);
}
 
static int _ode_count(int _type){ return 1;}
 
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  ek = _ion_ek;
  cai = _ion_cai;
     _ode_spec1 ();
  }}
 
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { 
 	int _i; _p = _pp; _ppvar = _ppd;
	_cvode_ieq = _ieq;
	for (_i=0; _i < 1; ++_i) {
		_pv[_i] = _pp + _slist1[_i];  _pvdot[_i] = _pp + _dlist1[_i];
		_cvode_abstol(_atollist, _atol, _i);
	}
 }
 
static void _ode_matsol_instance1(_threadargsproto_) {
 _ode_matsol1 ();
 }
 
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  ek = _ion_ek;
  cai = _ion_cai;
 _ode_matsol_instance1(_threadargs_);
 }}
 extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
 static void _update_ion_pointer(Datum* _ppvar) {
   nrn_update_ion_pointer(_k_sym, _ppvar, 0, 0);
   nrn_update_ion_pointer(_k_sym, _ppvar, 1, 3);
   nrn_update_ion_pointer(_k_sym, _ppvar, 2, 4);
   nrn_update_ion_pointer(_ca_sym, _ppvar, 3, 1);
 }

static void initmodel() {
  int _i; double _save;_ninits++;
 _save = t;
 t = 0.0;
{
  o = o0;
 {
   rate ( _threadargscomma_ v , cai ) ;
   o = oinf ;
   }
  _sav_indep = t; t = _save;

}
}

static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v = _v;
  ek = _ion_ek;
  cai = _ion_cai;
 initmodel();
 }}

static double _nrn_current(double _v){double _current=0.;v=_v;{ {
   g = gmax * pow( o , st ) ;
   ik = g * ( v - ek ) ;
   myi = ik ;
   }
 _current += ik;

} return _current;
}

static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
  ek = _ion_ek;
  cai = _ion_cai;
 _g = _nrn_current(_v + .001);
 	{ double _dik;
  _dik = ik;
 _rhs = _nrn_current(_v);
  _ion_dikdv += (_dik - ik)/.001 ;
 	}
 _g = (_g - _rhs)/.001;
  _ion_ik += ik ;
#if CACHEVEC
  if (use_cachevec) {
	VEC_RHS(_ni[_iml]) -= _rhs;
  }else
#endif
  {
	NODERHS(_nd) -= _rhs;
  }
 
}}

static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml];
#if CACHEVEC
  if (use_cachevec) {
	VEC_D(_ni[_iml]) += _g;
  }else
#endif
  {
     _nd = _ml->_nodelist[_iml];
	NODED(_nd) += _g;
  }
 
}}

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v=_v;
{
  ek = _ion_ek;
  cai = _ion_cai;
 { error =  state();
 if(error){fprintf(stderr,"at line 95 in file ch_KvCaB.mod:\n	SOLVE state METHOD cnexp\n"); nrn_complain(_p); abort_run(error);}
 } }}

}

static void terminal(){}

static void _initlists() {
 int _i; static int _first = 1;
  if (!_first) return;
 _slist1[0] = &(o) - _p;  _dlist1[0] = &(Do) - _p;
_first = 0;
}

#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/ch_KvCaB.mod";
static const char* nmodl_file_text = 
  "TITLE Calcium activated potassium channel (voltage dependent)\n"
  "\n"
  "COMMENT\n"
  "Ca2+-activated K+ channel (voltage dependent)\n"
  "\n"
  "Ions: k\n"
  "\n"
  "Style: quasi-ohmic\n"
  "\n"
  "From: Modified from Moczydlowski and Latorre (1983) J. Gen. Physiol. 82\n"
  "\n"
  "Updates:\n"
  "2014 December (Marianne Bezaire): documented\n"
  "ENDCOMMENT\n"
  "\n"
  "\n"
  "VERBATIM\n"
  "#include <stdlib.h> /* 	Include this library so that the following\n"
  "						(innocuous) warning does not appear:\n"
  "						 In function '_thread_cleanup':\n"
  "						 warning: incompatible implicit declaration of \n"
  "						          built-in function 'free'  */\n"
  "ENDVERBATIM\n"
  "\n"
  "UNITS {\n"
  "	(molar) = (1/liter)\n"
  "}\n"
  "\n"
  "UNITS {\n"
  "	(mV) =	(millivolt)\n"
  "	(mA) =	(milliamp)\n"
  "	(mM) =	(millimolar)\n"
  "}\n"
  "\n"
  "NEURON {\n"
  "	SUFFIX ch_KvCaB\n"
  "	USEION k READ ek WRITE ik\n"
  "	USEION ca READ cai VALENCE 2\n"
  "	:USEION nca READ ncai VALENCE 2\n"
  "	:USEION lca READ lcai VALENCE 2\n"
  "	:USEION tca READ tcai VALENCE 2\n"
  "	RANGE gmax, g, ik\n"
  "	RANGE myi\n"
  "	GLOBAL oinf, otau	: these two are not thread safe\n"
  "    THREADSAFE\n"
  "}\n"
  "\n"
  "UNITS {\n"
  "	FARADAY = (faraday)  (kilocoulombs)\n"
  "	R = 8.313424 (joule/degC)\n"
  "}\n"
  "\n"
  "PARAMETER {	: clean up the PARAMETER and ASSIGNED blocks\n"
  "	gmax=.01	(mho/cm2)	: Maximum Permeability\n"
  "\n"
  "	d1 = .84\n"
  "	d2 = 1.	\n"
  "	k1 = .48e-3	(mM)\n"
  "	k2 = .13e-6	(mM)\n"
  "	:cai = 5.e-5	(mM)\n"
  "	cai (mM)\n"
  "	\n"
  "	abar = .28	(/ms)\n"
  "	bbar = .48	(/ms)\n"
  "	\n"
  "	st=1		(1)\n"
  "}\n"
  "\n"
  "ASSIGNED {	: clean up the PARAMETER and ASSIGNED blocks\n"
  "      celsius (degC) : temperature - set in hoc; default is 6.3\n"
  "	v			(mV)\n"
  "\n"
  "	:lcai		(mV)\n"
  "	:ncai		(mV)\n"
  "	:tcai		(mV)\n"
  "\n"
  "	ek			(mV)\n"
  "	ik			(mA/cm2)\n"
  "\n"
  "	oinf\n"
  "	otau		(ms)\n"
  "	g		(mho/cm2)\n"
  "	myi (mA/cm2)\n"
  "}\n"
  "\n"
  "INITIAL {\n"
  "	:cai= ncai + lcai : + tcai\n"
  "        rate(v,cai)\n"
  "        o=oinf\n"
  "}\n"
  "\n"
  "STATE {	o }		: fraction of open channels\n"
  "\n"
  "BREAKPOINT {\n"
  "	SOLVE state METHOD cnexp\n"
  "	g = gmax*o^st\n"
  "	ik = g*(v - ek)\n"
  "	myi = ik\n"
  "}\n"
  "\n"
  "DERIVATIVE state {	: exact when v held constant; integrates over dt step\n"
  "	:cai= ncai + lcai : + tcai\n"
  "	rate(v, cai)\n"
  "	o' = (oinf - o)/otau\n"
  "}\n"
  "\n"
  "FUNCTION alp(v (mV), c (mM)) (1/ms) { :callable from hoc\n"
  "	alp = c*abar/(c + exp1(k1,d1,v))\n"
  "}\n"
  "\n"
  "FUNCTION bet(v (mV), c (mM)) (1/ms) { :callable from hoc\n"
  "	bet = bbar/(1 + c/exp1(k2,d2,v))\n"
  "}\n"
  "\n"
  "FUNCTION exp1(k (mM), d, v (mV)) (mM) { :callable from hoc\n"
  "	exp1 = k*exp(-2*d*FARADAY*v/R/(273.15 + celsius))\n"
  "}\n"
  "\n"
  "PROCEDURE rate(v (mV), c (mM)) { :callable from hoc\n"
  "	LOCAL a\n"
  "	a = alp(v,c)\n"
  "	otau = 1/(a + bet(v, c))\n"
  "	oinf = a*otau\n"
  "}\n"
  "\n"
  "\n"
  "\n"
  "\n"
  "\n"
  "\n"
  ;
#endif