/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__ch_Navngf
#define _nrn_initial _nrn_initial__ch_Navngf
#define nrn_cur _nrn_cur__ch_Navngf
#define _nrn_current _nrn_current__ch_Navngf
#define nrn_jacob _nrn_jacob__ch_Navngf
#define nrn_state _nrn_state__ch_Navngf
#define _net_receive _net_receive__ch_Navngf
#define _f_trates _f_trates__ch_Navngf
#define rates rates__ch_Navngf
#define states states__ch_Navngf
#define trates trates__ch_Navngf
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gmax _p[0]
#define g _p[1]
#define ina _p[2]
#define minf _p[3]
#define hinf _p[4]
#define mtau _p[5]
#define htau _p[6]
#define myi _p[7]
#define m _p[8]
#define h _p[9]
#define ena _p[10]
#define Dm _p[11]
#define Dh _p[12]
#define mexp _p[13]
#define hexp _p[14]
#define v _p[15]
#define _g _p[16]
#define _ion_ena *_ppvar[0]._pval
#define _ion_ina *_ppvar[1]._pval
#define _ion_dinadv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_rates(void);
static void _hoc_states(void);
static void _hoc_trates(void);
static void _hoc_vtrap(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_ch_Navngf", _hoc_setdata,
"rates_ch_Navngf", _hoc_rates,
"states_ch_Navngf", _hoc_states,
"trates_ch_Navngf", _hoc_trates,
"vtrap_ch_Navngf", _hoc_vtrap,
0, 0
};
#define vtrap vtrap_ch_Navngf
extern double vtrap( _threadargsprotocomma_ double , double );
static void _check_trates(double*, Datum*, Datum*, _NrnThread*);
static void _check_table_thread(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, int _type) {
_check_trates(_p, _ppvar, _thread, _nt);
}
#define _zq10 _thread[0]._pval[0]
/* declare global and static user variables */
#define hBetaV hBetaV_ch_Navngf
double hBetaV = 12.1463;
#define hBetaC hBetaC_ch_Navngf
double hBetaC = 3.0931;
#define hAlphV hAlphV_ch_Navngf
double hAlphV = 64.4184;
#define hAlphC hAlphC_ch_Navngf
double hAlphC = 0.29648;
#define mBetaV mBetaV_ch_Navngf
double mBetaV = -4;
#define mBetaC mBetaC_ch_Navngf
double mBetaC = 0.28483;
#define mAlphV mAlphV_ch_Navngf
double mAlphV = 24;
#define mAlphC mAlphC_ch_Navngf
double mAlphC = -0.34133;
#define usetable usetable_ch_Navngf
double usetable = 1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"usetable_ch_Navngf", 0, 1,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"mAlphC_ch_Navngf", "1",
"mAlphV_ch_Navngf", "mV",
"mBetaC_ch_Navngf", "1",
"mBetaV_ch_Navngf", "mV",
"hAlphC_ch_Navngf", "1",
"hAlphV_ch_Navngf", "mV",
"hBetaC_ch_Navngf", "1",
"hBetaV_ch_Navngf", "mV",
"gmax_ch_Navngf", "mho/cm2",
"g_ch_Navngf", "mho/cm2",
"ina_ch_Navngf", "mA/cm2",
"mtau_ch_Navngf", "ms",
"htau_ch_Navngf", "ms",
"myi_ch_Navngf", "mA/cm2",
0,0
};
static double delta_t = 0.01;
static double h0 = 0;
static double m0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"mAlphC_ch_Navngf", &mAlphC_ch_Navngf,
"mAlphV_ch_Navngf", &mAlphV_ch_Navngf,
"mBetaC_ch_Navngf", &mBetaC_ch_Navngf,
"mBetaV_ch_Navngf", &mBetaV_ch_Navngf,
"hAlphC_ch_Navngf", &hAlphC_ch_Navngf,
"hAlphV_ch_Navngf", &hAlphV_ch_Navngf,
"hBetaC_ch_Navngf", &hBetaC_ch_Navngf,
"hBetaV_ch_Navngf", &hBetaV_ch_Navngf,
"usetable_ch_Navngf", &usetable_ch_Navngf,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"ch_Navngf",
"gmax_ch_Navngf",
0,
"g_ch_Navngf",
"ina_ch_Navngf",
"minf_ch_Navngf",
"hinf_ch_Navngf",
"mtau_ch_Navngf",
"htau_ch_Navngf",
"myi_ch_Navngf",
0,
"m_ch_Navngf",
"h_ch_Navngf",
0,
0};
static Symbol* _na_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 17, _prop);
/*initialize range parameters*/
gmax = 0;
_prop->param = _p;
_prop->param_size = 17;
_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_na_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ena */
_ppvar[1]._pval = &prop_ion->param[3]; /* ina */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dinadv */
}
static void _initlists();
static void _thread_mem_init(Datum*);
static void _thread_cleanup(Datum*);
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _ch_Navngf_reg() {
int _vectorized = 1;
_initlists();
ion_reg("na", 1.0);
_na_sym = hoc_lookup("na_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 2);
_extcall_thread = (Datum*)ecalloc(1, sizeof(Datum));
_thread_mem_init(_extcall_thread);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 1, _thread_mem_init);
_nrn_thread_reg(_mechtype, 0, _thread_cleanup);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
_nrn_thread_table_reg(_mechtype, _check_table_thread);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 17, 3);
hoc_register_dparam_semantics(_mechtype, 0, "na_ion");
hoc_register_dparam_semantics(_mechtype, 1, "na_ion");
hoc_register_dparam_semantics(_mechtype, 2, "na_ion");
hoc_register_cvode(_mechtype, _ode_count, 0, 0, 0);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 ch_Navngf /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/ch_Navngf.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double FARADAY = 96520.0;
static double R = 8.3134;
/*Top LOCAL _zq10 */
static double *_t_minf;
static double *_t_mexp;
static double *_t_hinf;
static double *_t_hexp;
static double *_t_mtau;
static double *_t_htau;
static int _reset;
static char *modelname = "sodium channel (voltage dependent, higher threshold)";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _f_trates(_threadargsprotocomma_ double);
static int rates(_threadargsprotocomma_ double);
static int states(_threadargsproto_);
static int trates(_threadargsprotocomma_ double);
static void _n_trates(_threadargsprotocomma_ double _lv);
static int states ( _threadargsproto_ ) {
trates ( _threadargscomma_ v ) ;
m = m + mexp * ( minf - m ) ;
h = h + hexp * ( hinf - h ) ;
return 0; }
static void _hoc_states(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
states ( _p, _ppvar, _thread, _nt );
hoc_retpushx(_r);
}
static int rates ( _threadargsprotocomma_ double _lv ) {
double _lalpha , _lbeta , _lsum ;
_zq10 = pow( 3.0 , ( ( celsius - 34.0 ) / 10.0 ) ) ;
_lalpha = mAlphC * vtrap ( _threadargscomma_ ( _lv + mAlphV ) , - 5.0 ) ;
_lbeta = mBetaC * vtrap ( _threadargscomma_ ( _lv + mBetaV ) , 5.0 ) ;
_lsum = _lalpha + _lbeta ;
mtau = 1.0 / _lsum ;
minf = _lalpha / _lsum ;
_lalpha = hAlphC / exp ( ( _lv + hAlphV ) / 20.0 ) ;
_lbeta = hBetaC / ( 1.0 + exp ( ( _lv + hBetaV ) / - 10.0 ) ) ;
_lsum = _lalpha + _lbeta ;
htau = 1.0 / _lsum ;
hinf = _lalpha / _lsum ;
return 0; }
static void _hoc_rates(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
rates ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static double _mfac_trates, _tmin_trates;
static void _check_trates(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
static int _maktable=1; int _i, _j, _ix = 0;
double _xi, _tmax;
static double _sav_dt;
static double _sav_celsius;
static double _sav_mAlphV;
static double _sav_mAlphC;
static double _sav_mBetaV;
static double _sav_mBetaC;
static double _sav_hAlphV;
static double _sav_hAlphC;
static double _sav_hBetaV;
static double _sav_hBetaC;
if (!usetable) {return;}
if (_sav_dt != dt) { _maktable = 1;}
if (_sav_celsius != celsius) { _maktable = 1;}
if (_sav_mAlphV != mAlphV) { _maktable = 1;}
if (_sav_mAlphC != mAlphC) { _maktable = 1;}
if (_sav_mBetaV != mBetaV) { _maktable = 1;}
if (_sav_mBetaC != mBetaC) { _maktable = 1;}
if (_sav_hAlphV != hAlphV) { _maktable = 1;}
if (_sav_hAlphC != hAlphC) { _maktable = 1;}
if (_sav_hBetaV != hBetaV) { _maktable = 1;}
if (_sav_hBetaC != hBetaC) { _maktable = 1;}
if (_maktable) { double _x, _dx; _maktable=0;
_tmin_trates = - 100.0 ;
_tmax = 100.0 ;
_dx = (_tmax - _tmin_trates)/200.; _mfac_trates = 1./_dx;
for (_i=0, _x=_tmin_trates; _i < 201; _x += _dx, _i++) {
_f_trates(_p, _ppvar, _thread, _nt, _x);
_t_minf[_i] = minf;
_t_mexp[_i] = mexp;
_t_hinf[_i] = hinf;
_t_hexp[_i] = hexp;
_t_mtau[_i] = mtau;
_t_htau[_i] = htau;
}
_sav_dt = dt;
_sav_celsius = celsius;
_sav_mAlphV = mAlphV;
_sav_mAlphC = mAlphC;
_sav_mBetaV = mBetaV;
_sav_mBetaC = mBetaC;
_sav_hAlphV = hAlphV;
_sav_hAlphC = hAlphC;
_sav_hBetaV = hBetaV;
_sav_hBetaC = hBetaC;
}
}
static int trates(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv) {
#if 0
_check_trates(_p, _ppvar, _thread, _nt);
#endif
_n_trates(_p, _ppvar, _thread, _nt, _lv);
return 0;
}
static void _n_trates(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv){ int _i, _j;
double _xi, _theta;
if (!usetable) {
_f_trates(_p, _ppvar, _thread, _nt, _lv); return;
}
_xi = _mfac_trates * (_lv - _tmin_trates);
if (isnan(_xi)) {
minf = _xi;
mexp = _xi;
hinf = _xi;
hexp = _xi;
mtau = _xi;
htau = _xi;
return;
}
if (_xi <= 0.) {
minf = _t_minf[0];
mexp = _t_mexp[0];
hinf = _t_hinf[0];
hexp = _t_hexp[0];
mtau = _t_mtau[0];
htau = _t_htau[0];
return; }
if (_xi >= 200.) {
minf = _t_minf[200];
mexp = _t_mexp[200];
hinf = _t_hinf[200];
hexp = _t_hexp[200];
mtau = _t_mtau[200];
htau = _t_htau[200];
return; }
_i = (int) _xi;
_theta = _xi - (double)_i;
minf = _t_minf[_i] + _theta*(_t_minf[_i+1] - _t_minf[_i]);
mexp = _t_mexp[_i] + _theta*(_t_mexp[_i+1] - _t_mexp[_i]);
hinf = _t_hinf[_i] + _theta*(_t_hinf[_i+1] - _t_hinf[_i]);
hexp = _t_hexp[_i] + _theta*(_t_hexp[_i+1] - _t_hexp[_i]);
mtau = _t_mtau[_i] + _theta*(_t_mtau[_i+1] - _t_mtau[_i]);
htau = _t_htau[_i] + _theta*(_t_htau[_i+1] - _t_htau[_i]);
}
static int _f_trates ( _threadargsprotocomma_ double _lv ) {
double _ltinc ;
rates ( _threadargscomma_ _lv ) ;
_ltinc = - dt * _zq10 ;
mexp = 1.0 - exp ( _ltinc / mtau ) ;
hexp = 1.0 - exp ( _ltinc / htau ) ;
return 0; }
static void _hoc_trates(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
#if 1
_check_trates(_p, _ppvar, _thread, _nt);
#endif
_r = 1.;
trates ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double vtrap ( _threadargsprotocomma_ double _lx , double _ly ) {
double _lvtrap;
if ( fabs ( _lx / _ly ) < 1e-6 ) {
_lvtrap = _ly * ( 1.0 - _lx / _ly / 2.0 ) ;
}
else {
_lvtrap = _lx / ( exp ( _lx / _ly ) - 1.0 ) ;
}
return _lvtrap;
}
static void _hoc_vtrap(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = vtrap ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ hoc_execerror("ch_Navngf", "cannot be used with CVODE"); return 0;}
static void _thread_mem_init(Datum* _thread) {
_thread[0]._pval = (double*)ecalloc(1, sizeof(double));
}
static void _thread_cleanup(Datum* _thread) {
free((void*)(_thread[0]._pval));
}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_na_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_na_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_na_sym, _ppvar, 2, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
h = h0;
m = m0;
{
trates ( _threadargscomma_ v ) ;
m = minf ;
h = hinf ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if 0
_check_trates(_p, _ppvar, _thread, _nt);
#endif
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ena = _ion_ena;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
g = gmax * m * m * m * h ;
ina = g * ( v - ena ) ;
myi = ina ;
}
_current += ina;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ena = _ion_ena;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dina;
_dina = ina;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dinadv += (_dina - ina)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ina += ina ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ena = _ion_ena;
{ { states(_p, _ppvar, _thread, _nt); }
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_t_minf = makevector(201*sizeof(double));
_t_mexp = makevector(201*sizeof(double));
_t_hinf = makevector(201*sizeof(double));
_t_hexp = makevector(201*sizeof(double));
_t_mtau = makevector(201*sizeof(double));
_t_htau = makevector(201*sizeof(double));
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/ch_Navngf.mod";
static const char* nmodl_file_text =
"TITLE sodium channel (voltage dependent, higher threshold)\n"
"\n"
"COMMENT\n"
"sodium channel (voltage dependent, higher threshold)\n"
"\n"
"Ions: na\n"
"\n"
"Style: quasi-ohmic\n"
"\n"
"From: modified from ch_Nav to have a higher threshold, \n"
" suitable for neurogliaform and ivy cells\n"
"\n"
"Updates:\n"
"2014 December (Marianne Bezaire): documented\n"
"ENDCOMMENT\n"
"\n"
"COMMENT\n"
"VERBATIM\n"
"#include <stdlib.h> \n"
"/* Include this library so that the following (innocuous) warning does not appear:\n"
" In function '_thread_cleanup':\n"
" warning: incompatible implicit declaration of built-in function 'free' */\n"
"ENDVERBATIM\n"
"ENDCOMMENT\n"
"\n"
"UNITS {\n"
" (mA) =(milliamp)\n"
" (mV) =(millivolt)\n"
" (uF) = (microfarad)\n"
" (molar) = (1/liter)\n"
" (nA) = (nanoamp)\n"
" (mM) = (millimolar)\n"
" (um) = (micron)\n"
" FARADAY = 96520 (coul)\n"
" R = 8.3134 (joule/degC)\n"
"}\n"
" \n"
"NEURON { \n"
" SUFFIX ch_Navngf \n"
" USEION na READ ena WRITE ina VALENCE 1\n"
" RANGE g, gmax, minf, mtau, hinf, htau, ina, m, h\n"
" RANGE myi\n"
" THREADSAFE\n"
"}\n"
"\n"
"PARAMETER {\n"
" ena (mV)\n"
" gmax (mho/cm2) \n"
" \n"
" mAlphC = -0.34133 (1)\n"
" mAlphV = 24 (mV)\n"
" mBetaC = 0.28483 (1)\n"
" mBetaV = -4 (mV)\n"
"\n"
" hAlphC = 0.29648 (1)\n"
" hAlphV = 64.4184 (mV)\n"
" hBetaC = 3.0931 (1)\n"
" hBetaV = 12.1463 (mV)\n"
"}\n"
"\n"
"STATE {\n"
" m h\n"
"}\n"
"\n"
"ASSIGNED {\n"
" v (mV) \n"
" celsius (degC) : temperature - set in hoc; default is 6.3\n"
" dt (ms) \n"
"\n"
" g (mho/cm2)\n"
" ina (mA/cm2)\n"
" minf\n"
" hinf\n"
" mtau (ms)\n"
" htau (ms)\n"
" mexp\n"
" hexp \n"
" myi (mA/cm2)\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states\n"
" g = gmax*m*m*m*h \n"
" ina = g*(v - ena)\n"
" myi = ina\n"
"}\n"
" \n"
"UNITSOFF\n"
" \n"
"INITIAL {\n"
" trates(v)\n"
" m = minf\n"
" h = hinf\n"
"}\n"
"\n"
"PROCEDURE states() { :Computes state variables m, h, and n \n"
" trates(v) : at the current v and dt.\n"
" m = m + mexp*(minf-m)\n"
" h = h + hexp*(hinf-h)\n"
"}\n"
" \n"
"LOCAL q10 : declare outside a block so available to whole mechanism\n"
"PROCEDURE rates(v) { :Computes rate and other constants at current v.\n"
" :Call once from HOC to initialize inf at resting v.\n"
" LOCAL alpha, beta, sum : only available to block; must be first line in block\n"
"\n"
" q10 = 3^((celsius - 34)/10)\n"
"\n"
" :\"m\" sodium activation system - act and inact cross at -40\n"
" alpha = mAlphC*vtrap((v+mAlphV),-5)\n"
" beta = mBetaC*vtrap((v+mBetaV),5)\n"
" sum = alpha+beta \n"
" mtau = 1/sum \n"
" minf = alpha/sum\n"
" \n"
" :\"h\" sodium inactivation system\n"
" alpha = hAlphC/exp((v+hAlphV)/20)\n"
" beta = hBetaC/(1+exp((v+hBetaV)/-10))\n"
" sum = alpha+beta\n"
" htau = 1/sum \n"
" hinf = alpha/sum \n"
"}\n"
" \n"
"PROCEDURE trates(v) { :Computes rate and other constants at current v.\n"
" :Call once from HOC to initialize inf at resting v.\n"
" LOCAL tinc : only available to block; must be first line in block\n"
" TABLE minf, mexp, hinf, hexp, mtau, htau\n"
" DEPEND dt, celsius, mAlphV, mAlphC, mBetaV, mBetaC, hAlphV, hAlphC, hBetaV, hBetaC\n"
" FROM -100 TO 100 WITH 200\n"
"\n"
" rates(v) : not consistently executed from here if usetable_hh == 1\n"
" : so don't expect the tau values to be tracking along with\n"
" : the inf values in hoc\n"
"\n"
" tinc = -dt * q10\n"
"\n"
" mexp = 1 - exp(tinc/mtau)\n"
" hexp = 1 - exp(tinc/htau)\n"
"}\n"
" \n"
"FUNCTION vtrap(x,y) { :Traps for 0 in denominator of rate eqns.\n"
" if (fabs(x/y) < 1e-6) {\n"
" vtrap = y*(1 - x/y/2)\n"
" }else{ \n"
" vtrap = x/(exp(x/y) - 1)\n"
" }\n"
"}\n"
" \n"
"UNITSON\n"
"\n"
"\n"
"\n"
"\n"
"\n"
"\n"
"\n"
;
#endif