/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__h
#define _nrn_initial _nrn_initial__h
#define nrn_cur _nrn_cur__h
#define _nrn_current _nrn_current__h
#define nrn_jacob _nrn_jacob__h
#define nrn_state _nrn_state__h
#define _net_receive _net_receive__h
#define rate rate__h
#define states states__h
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gbar _p[0]
#define vhalfl _p[1]
#define i _p[2]
#define linf _p[3]
#define taul _p[4]
#define g _p[5]
#define l _p[6]
#define Dl _p[7]
#define v _p[8]
#define _g _p[9]
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_alpt(void);
static void _hoc_bett(void);
static void _hoc_rate(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_h", _hoc_setdata,
"alpt_h", _hoc_alpt,
"bett_h", _hoc_bett,
"rate_h", _hoc_rate,
0, 0
};
#define alpt alpt_h
#define bett bett_h
extern double alpt( _threadargsprotocomma_ double );
extern double bett( _threadargsprotocomma_ double );
/* declare global and static user variables */
#define a0t a0t_h
double a0t = 0.009;
#define erev erev_h
double erev = -37;
#define gmt gmt_h
double gmt = 0.01;
#define kl kl_h
double kl = -6;
#define qtl qtl_h
double qtl = 1;
#define q10 q10_h
double q10 = 4.5;
#define taumin taumin_h
double taumin = 2;
#define vhalft vhalft_h
double vhalft = -66.139;
#define zetat zetat_h
double zetat = 20;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"erev_h", "mV",
"vhalft_h", "mV",
"a0t_h", "/ms",
"zetat_h", "1",
"gmt_h", "1",
"taumin_h", "ms",
"gbar_h", "mho/cm2",
"vhalfl_h", "mV",
"i_h", "mA/cm2",
0,0
};
static double delta_t = 0.01;
static double l0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"erev_h", &erev_h,
"kl_h", &kl_h,
"vhalft_h", &vhalft_h,
"a0t_h", &a0t_h,
"zetat_h", &zetat_h,
"gmt_h", &gmt_h,
"q10_h", &q10_h,
"qtl_h", &qtl_h,
"taumin_h", &taumin_h,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[0]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"h",
"gbar_h",
"vhalfl_h",
0,
"i_h",
"linf_h",
"taul_h",
"g_h",
0,
"l_h",
0,
0};
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 10, _prop);
/*initialize range parameters*/
gbar = 0.0001;
vhalfl = -78.474;
_prop->param = _p;
_prop->param_size = 10;
_ppvar = nrn_prop_datum_alloc(_mechtype, 1, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _h_BS_reg() {
int _vectorized = 1;
_initlists();
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 10, 1);
hoc_register_dparam_semantics(_mechtype, 0, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 h /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/h_BS.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "I-h channel from Magee 1998 for distal dendrites";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rate(_threadargsprotocomma_ double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[1], _dlist1[1];
static int states(_threadargsproto_);
double alpt ( _threadargsprotocomma_ double _lv ) {
double _lalpt;
_lalpt = exp ( 0.0378 * zetat * ( _lv - vhalft ) ) ;
return _lalpt;
}
static void _hoc_alpt(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = alpt ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double bett ( _threadargsprotocomma_ double _lv ) {
double _lbett;
_lbett = exp ( 0.0378 * zetat * gmt * ( _lv - vhalft ) ) ;
return _lbett;
}
static void _hoc_bett(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = bett ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
rate ( _threadargscomma_ v ) ;
Dl = ( linf - l ) / taul ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
rate ( _threadargscomma_ v ) ;
Dl = Dl / (1. - dt*( ( ( ( - 1.0 ) ) ) / taul )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
rate ( _threadargscomma_ v ) ;
l = l + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / taul)))*(- ( ( ( linf ) ) / taul ) / ( ( ( ( - 1.0 ) ) ) / taul ) - l) ;
}
return 0;
}
static int rate ( _threadargsprotocomma_ double _lv ) {
double _la , _lqt ;
_lqt = pow( q10 , ( ( celsius - 33.0 ) / 10.0 ) ) ;
_la = alpt ( _threadargscomma_ _lv ) ;
linf = 1.0 / ( 1.0 + exp ( - ( _lv - vhalfl ) / kl ) ) ;
taul = bett ( _threadargscomma_ _lv ) / ( qtl * _lqt * a0t * ( 1.0 + _la ) ) + 1e-8 ;
if ( taul < taumin ) {
taul = taumin ;
}
return 0; }
static void _hoc_rate(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
rate ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 1;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 1; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_matsol_instance1(_threadargs_);
}}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
l = l0;
{
rate ( _threadargscomma_ v ) ;
l = linf ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
g = gbar * l ;
i = g * ( v - erev ) ;
}
_current += i;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
}
_g = (_g - _rhs)/.001;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
{ states(_p, _ppvar, _thread, _nt);
}}}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(l) - _p; _dlist1[0] = &(Dl) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/h_BS.mod";
static const char* nmodl_file_text =
"TITLE I-h channel from Magee 1998 for distal dendrites\n"
": modified to take into account Sonia's exp. Apr.2008 M.Migliore\n"
": thread-safe 2010-05-18 Ben Suter\n"
": 2010-11-07 Ben Suter, removing \"hd\" from parameter names, changing suffix from \"hd\" to \"h\"\n"
": Parameters fit to pre-ZD current-clamp step responses from experiment BS0284 (traces and reconstruction from single corticospinal neuron)\n"
": 2011-09-18 Ben Suter, set default parameter values to those found from MRF optimization for BS0284 model\n"
":\n"
": :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\n"
": Copyright 2011, Benjamin Suter (for changes only)\n"
": Used in model of corticospinal neuron BS0284 and published as:\n"
": \"Intrinsic electrophysiology of mouse corticospinal neurons: a characteristic set of features embodied in a realistic computational model\"\n"
": by Benjamin Suter, Michele Migliore, and Gordon Shepherd\n"
": Submitted September 2011\n"
": :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\n"
"\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
"}\n"
"\n"
"PARAMETER {\n"
" v (mV)\n"
" celsius = 34.0 (degC)\n"
" erev = -37.0 (mV)\n"
" gbar = 0.0001 (mho/cm2)\n"
" vhalfl = -78.474 (mV) : was -81\n"
" kl = -6 : was -8\n"
" vhalft = -66.139 (mV) : was -62\n"
" a0t = 0.009 (/ms) : was 0.0077696\n"
" zetat = 20 (1) : was 5\n"
" gmt = 0.01 (1) : was 0.057127\n"
" q10 = 4.5\n"
" qtl = 1\n"
" taumin = 2.0 (ms) : minimal value of time constant\n"
"}\n"
"\n"
"NEURON {\n"
" SUFFIX h\n"
" NONSPECIFIC_CURRENT i\n"
" RANGE gbar, vhalfl\n"
" RANGE linf, taul, g\n"
" GLOBAL taumin\n"
"}\n"
"\n"
"STATE {\n"
" l\n"
"}\n"
"\n"
"ASSIGNED {\n"
" i (mA/cm2)\n"
" linf\n"
" taul\n"
" g\n"
"}\n"
"\n"
"INITIAL {\n"
" rate(v)\n"
" l = linf\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" g = gbar*l\n"
" i = g*(v-erev)\n"
"}\n"
"\n"
"FUNCTION alpt(v(mV)) {\n"
" alpt = exp(0.0378*zetat*(v-vhalft))\n"
"}\n"
"\n"
"FUNCTION bett(v(mV)) {\n"
" bett = exp(0.0378*zetat*gmt*(v-vhalft))\n"
"}\n"
"\n"
"DERIVATIVE states { : exact when v held constant; integrates over dt step\n"
" rate(v)\n"
" l' = (linf - l)/taul\n"
"}\n"
"\n"
"PROCEDURE rate(v (mV)) { :callable from hoc\n"
" LOCAL a,qt\n"
" qt = q10^((celsius-33)/10)\n"
" a = alpt(v)\n"
" linf = 1/(1 + exp(-(v-vhalfl)/kl))\n"
" taul = bett(v)/(qtl*qt*a0t*(1+a)) + 1e-8 \n"
" if(taul < taumin) { taul = taumin } : min value of time constant\n"
"}\n"
;
#endif