/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__ican
#define _nrn_initial _nrn_initial__ican
#define nrn_cur _nrn_cur__ican
#define _nrn_current _nrn_current__ican
#define nrn_jacob _nrn_jacob__ican
#define nrn_state _nrn_state__ican
#define _net_receive _net_receive__ican
#define evaluate_fct evaluate_fct__ican
#define iassign iassign__ican
#define states states__ican
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gbar _p[0]
#define i _p[1]
#define m_inf _p[2]
#define tau_m _p[3]
#define m _p[4]
#define cai _p[5]
#define Dm _p[6]
#define ina _p[7]
#define tadj _p[8]
#define g _p[9]
#define v _p[10]
#define _g _p[11]
#define _ion_cai *_ppvar[0]._pval
#define _ion_ina *_ppvar[1]._pval
#define _ion_dinadv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_evaluate_fct(void);
static void _hoc_iassign(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_ican", _hoc_setdata,
"evaluate_fct_ican", _hoc_evaluate_fct,
"iassign_ican", _hoc_iassign,
0, 0
};
/* declare global and static user variables */
#define beta beta_ican
double beta = 0.0001;
#define cac cac_ican
double cac = 0.0004;
#define erev erev_ican
double erev = -20;
#define taumin taumin_ican
double taumin = 0.1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"erev_ican", "mV",
"beta_ican", "1/ms",
"cac_ican", "mM",
"taumin_ican", "ms",
"gbar_ican", "mho/cm2",
"i_ican", "mA/cm2",
"tau_m_ican", "ms",
0,0
};
static double delta_t = 0.01;
static double m0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"erev_ican", &erev_ican,
"beta_ican", &beta_ican,
"cac_ican", &cac_ican,
"taumin_ican", &taumin_ican,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"ican",
"gbar_ican",
0,
"i_ican",
"m_inf_ican",
"tau_m_ican",
0,
"m_ican",
0,
0};
static Symbol* _ca_sym;
static Symbol* _na_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 12, _prop);
/*initialize range parameters*/
gbar = 0.0001;
_prop->param = _p;
_prop->param_size = 12;
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 1, 0);
_ppvar[0]._pval = &prop_ion->param[1]; /* cai */
prop_ion = need_memb(_na_sym);
_ppvar[1]._pval = &prop_ion->param[3]; /* ina */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dinadv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _ican_sidi_reg() {
int _vectorized = 1;
_initlists();
ion_reg("ca", -10000.);
ion_reg("na", -10000.);
_ca_sym = hoc_lookup("ca_ion");
_na_sym = hoc_lookup("na_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 12, 4);
hoc_register_dparam_semantics(_mechtype, 0, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 1, "na_ion");
hoc_register_dparam_semantics(_mechtype, 2, "na_ion");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 ican /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/ican_sidi.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "Slow Ca-dependent cation current";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int evaluate_fct(_threadargsprotocomma_ double, double);
static int iassign(_threadargsproto_);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[1], _dlist1[1];
static int states(_threadargsproto_);
static int iassign ( _threadargsproto_ ) {
g = gbar * m * m ;
i = g * ( v - erev ) ;
ina = 0.7 * i ;
return 0; }
static void _hoc_iassign(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
iassign ( _p, _ppvar, _thread, _nt );
hoc_retpushx(_r);
}
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
evaluate_fct ( _threadargscomma_ v , cai ) ;
Dm = ( m_inf - m ) / tau_m ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
evaluate_fct ( _threadargscomma_ v , cai ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_m )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
evaluate_fct ( _threadargscomma_ v , cai ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_m)))*(- ( ( ( m_inf ) ) / tau_m ) / ( ( ( ( - 1.0 ) ) ) / tau_m ) - m) ;
}
return 0;
}
static int evaluate_fct ( _threadargsprotocomma_ double _lv , double _lcai ) {
double _lalpha2 ;
_lalpha2 = beta * pow( ( _lcai / cac ) , 2.0 ) ;
tau_m = 1.0 / ( _lalpha2 + beta ) / tadj ;
m_inf = _lalpha2 / ( _lalpha2 + beta ) ;
if ( tau_m < taumin ) {
tau_m = taumin ;
}
return 0; }
static void _hoc_evaluate_fct(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
evaluate_fct ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 1;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 1; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 1);
nrn_update_ion_pointer(_na_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_na_sym, _ppvar, 2, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
m = m0;
{
tadj = pow( 3.0 , ( ( celsius - 22.0 ) / 10.0 ) ) ;
evaluate_fct ( _threadargscomma_ v , cai ) ;
m = m_inf ;
iassign ( _threadargs_ ) ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
cai = _ion_cai;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
iassign ( _threadargs_ ) ;
}
_current += i;
_current += ina;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
cai = _ion_cai;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dina;
_dina = ina;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dinadv += (_dina - ina)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ina += ina ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
cai = _ion_cai;
{ states(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/ican_sidi.mod";
static const char* nmodl_file_text =
"TITLE Slow Ca-dependent cation current\n"
": from\n"
": https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=144089&file=/PFCcell/mechanism/ican.mod\n"
":\n"
": Ca++ dependent nonspecific cation current ICAN\n"
": Differential equations\n"
":\n"
": Model based on a first order kinetic scheme\n"
":\n"
": + n cai <-> (alpha,beta)\n"
":\n"
": Following this model, the activation fct will be half-activated at \n"
": a concentration of Cai = (beta/alpha)^(1/n) = cac (parameter)\n"
":\n"
": The mod file is here written for the case n=2 (2 binding sites)\n"
": ---------------------------------------------\n"
":\n"
": Kinetics based on: Partridge & Swandulla, TINS 11: 69-72, 1988.\n"
":\n"
": This current has the following properties:\n"
": - inward current (non specific for cations Na, K, Ca, ...)\n"
": - activated by intracellular calcium\n"
": - NOT voltage dependent\n"
":\n"
": A minimal value for the time constant has been added\n"
":\n"
": Ref: Destexhe et al., J. Neurophysiology 72: 803-818, 1994.\n"
": See also: http://www.cnl.salk.edu/~alain , http://cns.fmed.ulaval.ca\n"
":\n"
"\n"
": Updated by Kiki Sidiropoulou (2010) so that dADP has slow inactivation kinetics and it\n"
": is activated after 5 spikes\n"
"\n"
": Updated by Sam Neymotin (2016) to avoid using n ion and get rid of 'mystart' rule; also\n"
": make sure that INITIAL block assigns currents\n"
"\n"
"NEURON {\n"
" SUFFIX ican\n"
" NONSPECIFIC_CURRENT i\n"
" USEION ca READ cai\n"
" USEION na WRITE ina\n"
" RANGE gbar, m_inf, tau_m\n"
" GLOBAL beta, cac, taumin\n"
"}\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
" (molar) = (1/liter)\n"
" (mM) = (millimolar)\n"
"}\n"
"\n"
"PARAMETER {\n"
" v (mV)\n"
" celsius = 36 (degC)\n"
" erev = -20 (mV) : reversal potential\n"
" cai (mM) : initial [Ca]i\n"
" gbar = 0.0001 (mho/cm2)\n"
" beta = 0.0001 (1/ms) : backward rate constant\n"
" cac = 0.0004 (mM)\n"
" : middle point of activation fct, for ip3 as somacar, for current injection\n"
" taumin = 0.1 (ms) : minimal value of time constant\n"
"}\n"
"\n"
"STATE {\n"
" m\n"
"}\n"
"\n"
"ASSIGNED {\n"
" i (mA/cm2)\n"
" ina (mA/cm2)\n"
" m_inf\n"
" tau_m (ms)\n"
" tadj\n"
" g (mho/cm2)\n"
"}\n"
"\n"
"PROCEDURE iassign () {\n"
" g = gbar * m * m\n"
" i = g * (v - erev) \n"
" ina = 0.7 * i\n"
"}\n"
"\n"
"BREAKPOINT { \n"
" SOLVE states METHOD cnexp \n"
" iassign()\n"
"}\n"
"\n"
"DERIVATIVE states { \n"
" evaluate_fct(v,cai) \n"
" m' = (m_inf - m) / tau_m\n"
"}\n"
"\n"
"UNITSOFF\n"
"INITIAL {\n"
" : activation kinetics are assumed to be at 22 deg. C\n"
" : Q10 is assumed to be 3\n"
" tadj = 3.0 ^ ((celsius-22.0)/10) \n"
" evaluate_fct(v,cai)\n"
" m = m_inf\n"
" iassign()\n"
"}\n"
"\n"
"PROCEDURE evaluate_fct(v(mV),cai(mM)) { LOCAL alpha2 \n"
" alpha2 = beta * (cai/cac)^2 \n"
" tau_m = 1 / (alpha2 + beta) / tadj\n"
" m_inf = alpha2 / (alpha2 + beta) \n"
" if(tau_m < taumin) { tau_m = taumin } : min value of time constant\n"
"}\n"
"UNITSON\n"
;
#endif