/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__kapin
#define _nrn_initial _nrn_initial__kapin
#define nrn_cur _nrn_cur__kapin
#define _nrn_current _nrn_current__kapin
#define nrn_jacob _nrn_jacob__kapin
#define nrn_state _nrn_state__kapin
#define _net_receive _net_receive__kapin
#define rates rates__kapin
#define states states__kapin
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gkabar _p[0]
#define ik _p[1]
#define n _p[2]
#define l _p[3]
#define ek _p[4]
#define ninf _p[5]
#define linf _p[6]
#define taul _p[7]
#define taun _p[8]
#define Dn _p[9]
#define Dl _p[10]
#define v _p[11]
#define _g _p[12]
#define _ion_ek *_ppvar[0]._pval
#define _ion_ik *_ppvar[1]._pval
#define _ion_dikdv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_alpl(void);
static void _hoc_alpn(void);
static void _hoc_betl(void);
static void _hoc_betn(void);
static void _hoc_rates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_kapin", _hoc_setdata,
"alpl_kapin", _hoc_alpl,
"alpn_kapin", _hoc_alpn,
"betl_kapin", _hoc_betl,
"betn_kapin", _hoc_betn,
"rates_kapin", _hoc_rates,
0, 0
};
#define alpl alpl_kapin
#define alpn alpn_kapin
#define betl betl_kapin
#define betn betn_kapin
extern double alpl( _threadargsprotocomma_ double );
extern double alpn( _threadargsprotocomma_ double );
extern double betl( _threadargsprotocomma_ double );
extern double betn( _threadargsprotocomma_ double );
#define _zqt _thread[0]._pval[0]
/* declare global and static user variables */
#define a0n a0n_kapin
double a0n = 0.05;
#define gml gml_kapin
double gml = 1;
#define gmn gmn_kapin
double gmn = 0.55;
#define lmin lmin_kapin
double lmin = 2;
#define nmin nmin_kapin
double nmin = 0.1;
#define pw pw_kapin
double pw = -1;
#define q10 q10_kapin
double q10 = 5;
#define qq qq_kapin
double qq = 5;
#define tq tq_kapin
double tq = -40;
#define vhalfl vhalfl_kapin
double vhalfl = -56;
#define vhalfn vhalfn_kapin
double vhalfn = 11;
#define zetal zetal_kapin
double zetal = 3;
#define zetan zetan_kapin
double zetan = -1.5;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"vhalfn_kapin", "mV",
"vhalfl_kapin", "mV",
"a0n_kapin", "/ms",
"zetan_kapin", "1",
"zetal_kapin", "1",
"gmn_kapin", "1",
"gml_kapin", "1",
"lmin_kapin", "ms",
"nmin_kapin", "ms",
"pw_kapin", "1",
"tq_kapin", "mV",
"qq_kapin", "mV",
"gkabar_kapin", "mho/cm2",
"ik_kapin", "mA/cm2",
0,0
};
static double delta_t = 0.01;
static double l0 = 0;
static double n0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"vhalfn_kapin", &vhalfn_kapin,
"vhalfl_kapin", &vhalfl_kapin,
"a0n_kapin", &a0n_kapin,
"zetan_kapin", &zetan_kapin,
"zetal_kapin", &zetal_kapin,
"gmn_kapin", &gmn_kapin,
"gml_kapin", &gml_kapin,
"lmin_kapin", &lmin_kapin,
"nmin_kapin", &nmin_kapin,
"pw_kapin", &pw_kapin,
"tq_kapin", &tq_kapin,
"qq_kapin", &qq_kapin,
"q10_kapin", &q10_kapin,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"kapin",
"gkabar_kapin",
0,
"ik_kapin",
0,
"n_kapin",
"l_kapin",
0,
0};
static Symbol* _k_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 13, _prop);
/*initialize range parameters*/
gkabar = 0;
_prop->param = _p;
_prop->param_size = 13;
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_k_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ek */
_ppvar[1]._pval = &prop_ion->param[3]; /* ik */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dikdv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _thread_mem_init(Datum*);
static void _thread_cleanup(Datum*);
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _kapin_reg() {
int _vectorized = 1;
_initlists();
ion_reg("k", -10000.);
_k_sym = hoc_lookup("k_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 2);
_extcall_thread = (Datum*)ecalloc(1, sizeof(Datum));
_thread_mem_init(_extcall_thread);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 1, _thread_mem_init);
_nrn_thread_reg(_mechtype, 0, _thread_cleanup);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 13, 4);
hoc_register_dparam_semantics(_mechtype, 0, "k_ion");
hoc_register_dparam_semantics(_mechtype, 1, "k_ion");
hoc_register_dparam_semantics(_mechtype, 2, "k_ion");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 kapin /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/kapin.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
/*Top LOCAL _zqt */
static int _reset;
static char *modelname = "K-A channel from Klee Ficker and Heinemann";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rates(_threadargsprotocomma_ double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[2], _dlist1[2];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
rates ( _threadargscomma_ v ) ;
Dn = ( ninf - n ) / taun ;
Dl = ( linf - l ) / taul ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
rates ( _threadargscomma_ v ) ;
Dn = Dn / (1. - dt*( ( ( ( - 1.0 ) ) ) / taun )) ;
Dl = Dl / (1. - dt*( ( ( ( - 1.0 ) ) ) / taul )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
rates ( _threadargscomma_ v ) ;
n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / taun)))*(- ( ( ( ninf ) ) / taun ) / ( ( ( ( - 1.0 ) ) ) / taun ) - n) ;
l = l + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / taul)))*(- ( ( ( linf ) ) / taul ) / ( ( ( ( - 1.0 ) ) ) / taul ) - l) ;
}
return 0;
}
static int rates ( _threadargsprotocomma_ double _lv ) {
double _la ;
_la = alpn ( _threadargscomma_ _lv ) ;
ninf = 1.0 / ( 1.0 + _la ) ;
taun = betn ( _threadargscomma_ _lv ) / ( _zqt * a0n * ( 1.0 + _la ) ) ;
if ( taun < nmin ) {
taun = nmin ;
}
_la = alpl ( _threadargscomma_ _lv ) ;
linf = 1.0 / ( 1.0 + _la ) ;
taul = 12.0 ;
return 0; }
static void _hoc_rates(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
rates ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double alpn ( _threadargsprotocomma_ double _lv ) {
double _lalpn;
double _lzeta ;
_lzeta = zetan + pw / ( 1.0 + exp ( ( _lv - tq ) / qq ) ) ;
_lalpn = exp ( 1.e-3 * _lzeta * ( _lv - vhalfn ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
return _lalpn;
}
static void _hoc_alpn(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = alpn ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double betn ( _threadargsprotocomma_ double _lv ) {
double _lbetn;
double _lzeta ;
_lzeta = zetan + pw / ( 1.0 + exp ( ( _lv - tq ) / qq ) ) ;
_lbetn = exp ( 1.e-3 * _lzeta * gmn * ( _lv - vhalfn ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
return _lbetn;
}
static void _hoc_betn(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = betn ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double alpl ( _threadargsprotocomma_ double _lv ) {
double _lalpl;
_lalpl = exp ( 1.e-3 * zetal * ( _lv - vhalfl ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
return _lalpl;
}
static void _hoc_alpl(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = alpl ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double betl ( _threadargsprotocomma_ double _lv ) {
double _lbetl;
_lbetl = exp ( 1.e-3 * zetal * gml * ( _lv - vhalfl ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
return _lbetl;
}
static void _hoc_betl(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = betl ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 2;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ek = _ion_ek;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 2; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ek = _ion_ek;
_ode_matsol_instance1(_threadargs_);
}}
static void _thread_mem_init(Datum* _thread) {
_thread[0]._pval = (double*)ecalloc(1, sizeof(double));
}
static void _thread_cleanup(Datum* _thread) {
free((void*)(_thread[0]._pval));
}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_k_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_k_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_k_sym, _ppvar, 2, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
l = l0;
n = n0;
{
_zqt = pow( q10 , ( ( celsius - 24.0 ) / 10.0 ) ) ;
rates ( _threadargscomma_ v ) ;
n = ninf ;
l = linf ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ek = _ion_ek;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
ik = gkabar * n * l * ( v - ek ) ;
}
_current += ik;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ek = _ion_ek;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dik;
_dik = ik;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dikdv += (_dik - ik)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ik += ik ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ek = _ion_ek;
{ states(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(n) - _p; _dlist1[0] = &(Dn) - _p;
_slist1[1] = &(l) - _p; _dlist1[1] = &(Dl) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/kapin.mod";
static const char* nmodl_file_text =
"TITLE K-A channel from Klee Ficker and Heinemann\n"
": modified by Brannon and Yiota Poirazi (poirazi@LNC.usc.edu)\n"
": to account for Hoffman et al 1997 proximal region kinetics\n"
": used only in soma and sections located < 100 microns from the soma\n"
"\n"
"\n"
"NEURON {\n"
" SUFFIX kapin\n"
" USEION k READ ek WRITE ik\n"
" RANGE gkabar, ik\n"
" :GLOBAL ninf,linf,taul,taun,lmin\n"
"}\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
"\n"
"}\n"
"\n"
"\n"
"PARAMETER { :parameters that can be entered when function is called in cell-setup\n"
"\n"
" gkabar = 0 (mho/cm2) :initialized conductance\n"
" vhalfn = 11 (mV) :activation half-potential\n"
" vhalfl = -56 (mV) :inactivation half-potential\n"
" :vhalfl = -56 (mV) :inactivation half-potential\n"
" a0n = 0.05 (/ms) :parameters used\n"
" zetan = -1.5 (1) :in calculation of (-1.5)\n"
" zetal = 3 (1) :steady state values(3)\n"
" gmn = 0.55 (1) :and time constants(0.55) change to get an effect on spike repolarization\n"
" gml = 1 (1)\n"
" :gml = 1 (1)\n"
" lmin = 2 (ms)\n"
" nmin = 0.1 (ms)\n"
" pw = -1 (1)\n"
" tq = -40 (mV)\n"
" qq = 5 (mV)\n"
" q10 = 5 :temperature sensitivity\n"
"}\n"
"\n"
"\n"
"\n"
" \n"
"ASSIGNED { :parameters needed to solve DE\n"
" v (mV)\n"
" ek (mV) :K reversal potential (reset in cell-setup.hoc)\n"
" celsius (degC)\n"
" ik (mA/cm2)\n"
" ninf\n"
" linf \n"
" taul (ms)\n"
" taun (ms)\n"
"}\n"
"\n"
"\n"
"STATE { :the unknown parameters to be solved in the DEs \n"
" n l\n"
"}\n"
"\n"
"LOCAL qt\n"
"\n"
"INITIAL { :initialize the following parameter using rates()\n"
" qt = q10^((celsius-24)/10(degC)) : temprature adjustment factor\n"
" rates(v)\n"
" n = ninf\n"
" l = linf\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
": ik = gkabar*n*l*(v+70)\n"
" ik = gkabar*n*l*(v-ek)\n"
"}\n"
"\n"
"DERIVATIVE states {\n"
" rates(v)\n"
" n' = (ninf - n)/taun\n"
" l' = (linf - l)/taul\n"
"}\n"
"\n"
"\n"
"\n"
"PROCEDURE rates(v (mV)) { :callable from hoc\n"
" LOCAL a\n"
" \n"
" a = alpn(v)\n"
" ninf = 1/(1 + a) : activation variable steady state value\n"
" taun = betn(v)/(qt*a0n*(1+a)) : activation variable time constant\n"
" if (taun<nmin) {taun=nmin} : time constant not allowed to be less than nmin\n"
" \n"
" a = alpl(v)\n"
" linf = 1/(1+ a) : inactivation variable steady state value\n"
" taul = 12 (ms)\n"
" :taul = 0.26(ms/mV)*(v+50) : inactivation variable time constant\n"
" :if (taul<lmin) {taul=lmin} : time constant not allowed to be less than lmin\n"
"\n"
"}\n"
"\n"
"FUNCTION alpn(v(mV)) { LOCAL zeta \n"
" zeta = zetan+pw/(1+exp((v-tq)/qq))\n"
"UNITSOFF\n"
" alpn = exp(1.e-3*zeta*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) \n"
"UNITSON\n"
"}\n"
"\n"
"FUNCTION betn(v(mV)) { LOCAL zeta\n"
" zeta = zetan+pw/(1+exp((v-tq)/qq))\n"
"UNITSOFF\n"
" betn = exp(1.e-3*zeta*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) \n"
"UNITSON\n"
"}\n"
"\n"
"FUNCTION alpl(v(mV)) {\n"
"UNITSOFF\n"
" alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) \n"
"UNITSON\n"
"}\n"
"\n"
"FUNCTION betl(v(mV)) {\n"
"UNITSOFF\n"
" betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) \n"
"UNITSON\n"
"}\n"
"\n"
;
#endif