/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
 
#if METHOD3
extern int _method3;
#endif

#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
 
#define nrn_init _nrn_init__km
#define _nrn_initial _nrn_initial__km
#define nrn_cur _nrn_cur__km
#define _nrn_current _nrn_current__km
#define nrn_jacob _nrn_jacob__km
#define nrn_state _nrn_state__km
#define _net_receive _net_receive__km 
#define _f_trates _f_trates__km 
#define rates rates__km 
#define states states__km 
#define trates trates__km 
 
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 /* Thread safe. No static _p or _ppvar. */
 
#define t _nt->_t
#define dt _nt->_dt
#define gbar _p[0]
#define gk _p[1]
#define ninf _p[2]
#define ntau _p[3]
#define n _p[4]
#define a _p[5]
#define b _p[6]
#define ik _p[7]
#define ek _p[8]
#define Dn _p[9]
#define v _p[10]
#define _g _p[11]
#define _ion_ek	*_ppvar[0]._pval
#define _ion_ik	*_ppvar[1]._pval
#define _ion_dikdv	*_ppvar[2]._pval
 
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
 
#if defined(__cplusplus)
extern "C" {
#endif
 static int hoc_nrnpointerindex =  -1;
 static Datum* _extcall_thread;
 static Prop* _extcall_prop;
 /* external NEURON variables */
 extern double celsius;
 /* declaration of user functions */
 static void _hoc_efun(void);
 static void _hoc_rates(void);
 static void _hoc_trates(void);
 static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
 
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif

 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _extcall_prop = _prop;
 }
 static void _hoc_setdata() {
 Prop *_prop, *hoc_getdata_range(int);
 _prop = hoc_getdata_range(_mechtype);
   _setdata(_prop);
 hoc_retpushx(1.);
}
 /* connect user functions to hoc names */
 static VoidFunc hoc_intfunc[] = {
 "setdata_km", _hoc_setdata,
 "efun_km", _hoc_efun,
 "rates_km", _hoc_rates,
 "trates_km", _hoc_trates,
 0, 0
};
#define efun efun_km
 extern double efun( _threadargsprotocomma_ double );
 
static void _check_trates(double*, Datum*, Datum*, _NrnThread*); 
static void _check_table_thread(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, int _type) {
   _check_trates(_p, _ppvar, _thread, _nt);
 }
 #define _znexp _thread[0]._pval[0]
 /* declare global and static user variables */
 static int _thread1data_inuse = 0;
static double _thread1data[1];
#define _gth 1
#define Rb Rb_km
 double Rb = 0.001;
#define Ra Ra_km
 double Ra = 0.001;
#define qa qa_km
 double qa = 9;
#define q10 q10_km
 double q10 = 2.3;
#define tha tha_km
 double tha = -30;
#define tadj_km _thread1data[0]
#define tadj _thread[_gth]._pval[0]
#define temp temp_km
 double temp = 23;
#define usetable usetable_km
 double usetable = 1;
#define vmax vmax_km
 double vmax = 100;
#define vmin vmin_km
 double vmin = -120;
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 "usetable_km", 0, 1,
 0,0,0
};
 static HocParmUnits _hoc_parm_units[] = {
 "tha_km", "mV",
 "qa_km", "mV",
 "Ra_km", "/ms",
 "Rb_km", "/ms",
 "temp_km", "degC",
 "vmin_km", "mV",
 "vmax_km", "mV",
 "gbar_km", "pS/um2",
 "gk_km", "pS/um2",
 "ntau_km", "ms",
 0,0
};
 static double delta_t = 0.01;
 static double n0 = 0;
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 "tha_km", &tha_km,
 "qa_km", &qa_km,
 "Ra_km", &Ra_km,
 "Rb_km", &Rb_km,
 "temp_km", &temp_km,
 "q10_km", &q10_km,
 "vmin_km", &vmin_km,
 "vmax_km", &vmax_km,
 "tadj_km", &tadj_km,
 "usetable_km", &usetable_km,
 0,0
};
 static DoubVec hoc_vdoub[] = {
 0,0,0
};
 static double _sav_indep;
 static void nrn_alloc(Prop*);
static void  nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
 static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void  nrn_jacob(_NrnThread*, _Memb_list*, int);
 
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
 
#define _cvode_ieq _ppvar[3]._i
 static void _ode_matsol_instance1(_threadargsproto_);
 /* connect range variables in _p that hoc is supposed to know about */
 static const char *_mechanism[] = {
 "7.7.0",
"km",
 "gbar_km",
 0,
 "gk_km",
 "ninf_km",
 "ntau_km",
 0,
 "n_km",
 0,
 0};
 static Symbol* _k_sym;
 
extern Prop* need_memb(Symbol*);

static void nrn_alloc(Prop* _prop) {
	Prop *prop_ion;
	double *_p; Datum *_ppvar;
 	_p = nrn_prop_data_alloc(_mechtype, 12, _prop);
 	/*initialize range parameters*/
 	gbar = 10;
 	_prop->param = _p;
 	_prop->param_size = 12;
 	_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
 	_prop->dparam = _ppvar;
 	/*connect ionic variables to this model*/
 prop_ion = need_memb(_k_sym);
 nrn_promote(prop_ion, 0, 1);
 	_ppvar[0]._pval = &prop_ion->param[0]; /* ek */
 	_ppvar[1]._pval = &prop_ion->param[3]; /* ik */
 	_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dikdv */
 
}
 static void _initlists();
  /* some states have an absolute tolerance */
 static Symbol** _atollist;
 static HocStateTolerance _hoc_state_tol[] = {
 0,0
};
 static void _thread_mem_init(Datum*);
 static void _thread_cleanup(Datum*);
 static void _update_ion_pointer(Datum*);
 extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);

 void _km_reg() {
	int _vectorized = 1;
  _initlists();
 	ion_reg("k", -10000.);
 	_k_sym = hoc_lookup("k_ion");
 	register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 3);
  _extcall_thread = (Datum*)ecalloc(2, sizeof(Datum));
  _thread_mem_init(_extcall_thread);
  _thread1data_inuse = 0;
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
     _nrn_thread_reg(_mechtype, 1, _thread_mem_init);
     _nrn_thread_reg(_mechtype, 0, _thread_cleanup);
     _nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
     _nrn_thread_table_reg(_mechtype, _check_table_thread);
 #if NMODL_TEXT
  hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
  hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
  hoc_register_prop_size(_mechtype, 12, 4);
  hoc_register_dparam_semantics(_mechtype, 0, "k_ion");
  hoc_register_dparam_semantics(_mechtype, 1, "k_ion");
  hoc_register_dparam_semantics(_mechtype, 2, "k_ion");
  hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
 	hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
 	hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 km /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/km.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
 }
 /*Top LOCAL _znexp */
 static double *_t_ninf;
 static double *_t_ntau;
static int _reset;
static char *modelname = "";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _f_trates(_threadargsprotocomma_ double);
static int rates(_threadargsprotocomma_ double);
static int trates(_threadargsprotocomma_ double);
 
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
 static void _n_trates(_threadargsprotocomma_ double _lv);
 static int _slist1[1], _dlist1[1];
 static int states(_threadargsproto_);
 
/*CVODE*/
 static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
   trates ( _threadargscomma_ v ) ;
   Dn = ( ninf - n ) / ntau ;
   }
 return _reset;
}
 static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
 trates ( _threadargscomma_ v ) ;
 Dn = Dn  / (1. - dt*( ( ( ( - 1.0 ) ) ) / ntau )) ;
  return 0;
}
 /*END CVODE*/
 static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
   trates ( _threadargscomma_ v ) ;
    n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / ntau)))*(- ( ( ( ninf ) ) / ntau ) / ( ( ( ( - 1.0 ) ) ) / ntau ) - n) ;
   }
  return 0;
}
 static double _mfac_trates, _tmin_trates;
  static void _check_trates(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  static int _maktable=1; int _i, _j, _ix = 0;
  double _xi, _tmax;
  static double _sav_celsius;
  static double _sav_temp;
  static double _sav_Ra;
  static double _sav_Rb;
  static double _sav_tha;
  static double _sav_qa;
  if (!usetable) {return;}
  if (_sav_celsius != celsius) { _maktable = 1;}
  if (_sav_temp != temp) { _maktable = 1;}
  if (_sav_Ra != Ra) { _maktable = 1;}
  if (_sav_Rb != Rb) { _maktable = 1;}
  if (_sav_tha != tha) { _maktable = 1;}
  if (_sav_qa != qa) { _maktable = 1;}
  if (_maktable) { double _x, _dx; _maktable=0;
   _tmin_trates =  vmin ;
   _tmax =  vmax ;
   _dx = (_tmax - _tmin_trates)/199.; _mfac_trates = 1./_dx;
   for (_i=0, _x=_tmin_trates; _i < 200; _x += _dx, _i++) {
    _f_trates(_p, _ppvar, _thread, _nt, _x);
    _t_ninf[_i] = ninf;
    _t_ntau[_i] = ntau;
   }
   _sav_celsius = celsius;
   _sav_temp = temp;
   _sav_Ra = Ra;
   _sav_Rb = Rb;
   _sav_tha = tha;
   _sav_qa = qa;
  }
 }

 static int trates(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv) { 
#if 0
_check_trates(_p, _ppvar, _thread, _nt);
#endif
 _n_trates(_p, _ppvar, _thread, _nt, _lv);
 return 0;
 }

 static void _n_trates(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv){ int _i, _j;
 double _xi, _theta;
 if (!usetable) {
 _f_trates(_p, _ppvar, _thread, _nt, _lv); return; 
}
 _xi = _mfac_trates * (_lv - _tmin_trates);
 if (isnan(_xi)) {
  ninf = _xi;
  ntau = _xi;
  return;
 }
 if (_xi <= 0.) {
 ninf = _t_ninf[0];
 ntau = _t_ntau[0];
 return; }
 if (_xi >= 199.) {
 ninf = _t_ninf[199];
 ntau = _t_ntau[199];
 return; }
 _i = (int) _xi;
 _theta = _xi - (double)_i;
 ninf = _t_ninf[_i] + _theta*(_t_ninf[_i+1] - _t_ninf[_i]);
 ntau = _t_ntau[_i] + _theta*(_t_ntau[_i+1] - _t_ntau[_i]);
 }

 
static int  _f_trates ( _threadargsprotocomma_ double _lv ) {
   rates ( _threadargscomma_ _lv ) ;
    return 0; }
 
static void _hoc_trates(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 
#if 1
 _check_trates(_p, _ppvar, _thread, _nt);
#endif
 _r = 1.;
 trates ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
static int  rates ( _threadargsprotocomma_ double _lv ) {
   a = Ra * qa * efun ( _threadargscomma_ - ( _lv - tha ) / qa ) ;
   b = Rb * qa * efun ( _threadargscomma_ ( _lv - tha ) / qa ) ;
   tadj = pow( q10 , ( ( celsius - temp ) / 10.0 ) ) ;
   ntau = 1.0 / tadj / ( a + b ) ;
   ninf = a / ( a + b ) ;
    return 0; }
 
static void _hoc_rates(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r = 1.;
 rates ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double efun ( _threadargsprotocomma_ double _lz ) {
   double _lefun;
 if ( fabs ( _lz ) < 1e-4 ) {
     _lefun = 1.0 - _lz / 2.0 ;
     }
   else {
     _lefun = _lz / ( exp ( _lz ) - 1.0 ) ;
     }
   
return _lefun;
 }
 
static void _hoc_efun(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  efun ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
static int _ode_count(int _type){ return 1;}
 
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  ek = _ion_ek;
     _ode_spec1 (_p, _ppvar, _thread, _nt);
  }}
 
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { 
	double* _p; Datum* _ppvar;
 	int _i; _p = _pp; _ppvar = _ppd;
	_cvode_ieq = _ieq;
	for (_i=0; _i < 1; ++_i) {
		_pv[_i] = _pp + _slist1[_i];  _pvdot[_i] = _pp + _dlist1[_i];
		_cvode_abstol(_atollist, _atol, _i);
	}
 }
 
static void _ode_matsol_instance1(_threadargsproto_) {
 _ode_matsol1 (_p, _ppvar, _thread, _nt);
 }
 
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  ek = _ion_ek;
 _ode_matsol_instance1(_threadargs_);
 }}
 
static void _thread_mem_init(Datum* _thread) {
   _thread[0]._pval = (double*)ecalloc(1, sizeof(double));
  if (_thread1data_inuse) {_thread[_gth]._pval = (double*)ecalloc(1, sizeof(double));
 }else{
 _thread[_gth]._pval = _thread1data; _thread1data_inuse = 1;
 }
 }
 
static void _thread_cleanup(Datum* _thread) {
   free((void*)(_thread[0]._pval));
  if (_thread[_gth]._pval == _thread1data) {
   _thread1data_inuse = 0;
  }else{
   free((void*)_thread[_gth]._pval);
  }
 }
 extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
 static void _update_ion_pointer(Datum* _ppvar) {
   nrn_update_ion_pointer(_k_sym, _ppvar, 0, 0);
   nrn_update_ion_pointer(_k_sym, _ppvar, 1, 3);
   nrn_update_ion_pointer(_k_sym, _ppvar, 2, 4);
 }

static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  int _i; double _save;{
  n = n0;
 {
   tadj = pow( q10 , ( ( celsius - temp ) / ( 10.0 ) ) ) ;
   trates ( _threadargscomma_ v ) ;
   n = ninf ;
   }
 
}
}

static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];

#if 0
 _check_trates(_p, _ppvar, _thread, _nt);
#endif
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v = _v;
  ek = _ion_ek;
 initmodel(_p, _ppvar, _thread, _nt);
 }
}

static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
   gk = tadj * gbar * n ;
   ik = ( 1e-4 ) * gk * ( v - ek ) ;
   }
 _current += ik;

} return _current;
}

static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
  ek = _ion_ek;
 _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
 	{ double _dik;
  _dik = ik;
 _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
  _ion_dikdv += (_dik - ik)/.001 ;
 	}
 _g = (_g - _rhs)/.001;
  _ion_ik += ik ;
#if CACHEVEC
  if (use_cachevec) {
	VEC_RHS(_ni[_iml]) -= _rhs;
  }else
#endif
  {
	NODERHS(_nd) -= _rhs;
  }
 
}
 
}

static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml];
#if CACHEVEC
  if (use_cachevec) {
	VEC_D(_ni[_iml]) += _g;
  }else
#endif
  {
     _nd = _ml->_nodelist[_iml];
	NODED(_nd) += _g;
  }
 
}
 
}

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v=_v;
{
  ek = _ion_ek;
 {   states(_p, _ppvar, _thread, _nt);
  } }}

}

static void terminal(){}

static void _initlists(){
 double _x; double* _p = &_x;
 int _i; static int _first = 1;
  if (!_first) return;
 _slist1[0] = &(n) - _p;  _dlist1[0] = &(Dn) - _p;
   _t_ninf = makevector(200*sizeof(double));
   _t_ntau = makevector(200*sizeof(double));
_first = 0;
}

#if defined(__cplusplus)
} /* extern "C" */
#endif

#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/km.mod";
static const char* nmodl_file_text = 
  "COMMENT\n"
  "km.mod\n"
  "\n"
  "Potassium channel, Hodgkin-Huxley style kinetics\n"
  "Based on I-M (muscarinic K channel)\n"
  "Slow, noninactivating\n"
  "\n"
  "Author: Zach Mainen, Salk Institute, 1995, zach@salk.edu\n"
  "	\n"
  "26 Ago 2002 Modification of original channel to allow \n"
  "variable time step and to correct an initialization error.\n"
  "Done by Michael Hines(michael.hines@yale.e) and \n"
  "Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course \n"
  "in Computational Neuroscience. Obidos, Portugal\n"
  "\n"
  "20110202 made threadsafe by Ted Carnevale\n"
  "20120514 fixed singularity in PROCEDURE rates\n"
  "\n"
  "Special comment:\n"
  "\n"
  "This mechanism was designed to be run at a single operating \n"
  "temperature--37 deg C--which can be specified by the hoc \n"
  "assignment statement\n"
  "celsius = 37\n"
  "This mechanism is not intended to be used at other temperatures, \n"
  "or to investigate the effects of temperature changes.\n"
  "\n"
  "Zach Mainen created this particular model by adapting conductances \n"
  "from lower temperature to run at higher temperature, and found it \n"
  "necessary to reduce the temperature sensitivity of spike amplitude \n"
  "and time course.  He accomplished this by increasing the net ionic \n"
  "conductance through the heuristic of changing the standard HH \n"
  "formula\n"
  "  g = gbar*product_of_gating_variables\n"
  "to\n"
  "  g = tadj*gbar*product_of_gating_variables\n"
  "where\n"
  "  tadj = q10^((celsius - temp)/10)\n"
  "  temp is the \"reference temperature\" (at which the gating variable\n"
  "    time constants were originally determined)\n"
  "  celsius is the \"operating temperature\"\n"
  "\n"
  "Users should note that this is equivalent to changing the channel \n"
  "density from gbar at the \"reference temperature\" temp (the \n"
  "temperature at which the at which the gating variable time \n"
  "constants were originally determined) to tadj*gbar at the \n"
  "\"operating temperature\" celsius.\n"
  "ENDCOMMENT\n"
  "\n"
  "NEURON {\n"
  "    THREADSAFE\n"
  "	SUFFIX km\n"
  "	USEION k READ ek WRITE ik\n"
  "	RANGE n, gk, gbar\n"
  "	RANGE ninf, ntau\n"
  "	GLOBAL Ra, Rb\n"
  "	GLOBAL q10, temp, tadj, vmin, vmax\n"
  "}\n"
  "\n"
  "UNITS {\n"
  "	(mA) = (milliamp)\n"
  "	(mV) = (millivolt)\n"
  "	(pS) = (picosiemens)\n"
  "	(um) = (micron)\n"
  "} \n"
  "\n"
  "PARAMETER {\n"
  "	gbar = 10   	(pS/um2)	: 0.03 mho/cm2\n"
  "								\n"
  "	tha  = -30	(mV)		: v 1/2 for inf\n"
  "	qa   = 9	(mV)		: inf slope		\n"
  "	\n"
  "	Ra   = 0.001	(/ms)		: max act rate  (slow)\n"
  "	Rb   = 0.001	(/ms)		: max deact rate  (slow)\n"
  "\n"
  ":	dt		(ms)\n"
  "	temp = 23	(degC)		: original temp 	\n"
  "	q10  = 2.3			: temperature sensitivity\n"
  "\n"
  "	vmin = -120	(mV)\n"
  "	vmax = 100	(mV)\n"
  "} \n"
  "\n"
  "\n"
  "ASSIGNED {\n"
  "	v 		(mV)\n"
  "	celsius		(degC)\n"
  "	a		(/ms)\n"
  "	b		(/ms)\n"
  "	ik 		(mA/cm2)\n"
  "	gk		(pS/um2)\n"
  "	ek		(mV)\n"
  "	ninf\n"
  "	ntau (ms)	\n"
  "	tadj\n"
  "}\n"
  " \n"
  "\n"
  "STATE { n }\n"
  "\n"
  "INITIAL {\n"
  "    tadj = q10^((celsius - temp)/(10 (degC))) : make all threads calculate tadj at initialization\n"
  "\n"
  "	trates(v)\n"
  "	n = ninf\n"
  "}\n"
  "\n"
  "BREAKPOINT {\n"
  "        SOLVE states METHOD cnexp\n"
  "	gk = tadj*gbar*n\n"
  "	ik = (1e-4) * gk * (v - ek)\n"
  "} \n"
  "\n"
  "LOCAL nexp\n"
  "\n"
  "DERIVATIVE states {   :Computes state variable n \n"
  "        trates(v)      :             at the current v and dt.\n"
  "        n' = (ninf-n)/ntau\n"
  "\n"
  "}\n"
  "\n"
  "PROCEDURE trates(v (mV)) {  :Computes rate and other constants at current v.\n"
  "                      :Call once from HOC to initialize inf at resting v.\n"
  "    TABLE ninf, ntau\n"
  "    DEPEND celsius, temp, Ra, Rb, tha, qa\n"
  "    FROM vmin TO vmax WITH 199\n"
  "\n"
  "	rates(v): not consistently executed from here if usetable_hh == 1\n"
  "\n"
  ":        tinc = -dt * tadj\n"
  ":        nexp = 1 - exp(tinc/ntau)\n"
  "}\n"
  "\n"
  "UNITSOFF\n"
  "PROCEDURE rates(v (mV)) {  :Computes rate and other constants at current v.\n"
  "                      :Call once from HOC to initialize inf at resting v.\n"
  "\n"
  "    : singular when v = tha\n"
  ":    a = Ra * (v - tha) / (1 - exp(-(v - tha)/qa))\n"
  ":    a = Ra * qa*((v - tha)/qa) / (1 - exp(-(v - tha)/qa))\n"
  ":    a = Ra * qa*(-(v - tha)/qa) / (exp(-(v - tha)/qa) - 1)\n"
  "    a = Ra * qa * efun(-(v - tha)/qa)\n"
  "\n"
  "    : singular when v = tha\n"
  ":    b = -Rb * (v - tha) / (1 - exp((v - tha)/qa))\n"
  ":    b = -Rb * qa*((v - tha)/qa) / (1 - exp((v - tha)/qa))\n"
  ":    b = Rb * qa*((v - tha)/qa) / (exp((v - tha)/qa) - 1)\n"
  "    b = Rb * qa * efun((v - tha)/qa)\n"
  "\n"
  "        tadj = q10^((celsius - temp)/10)\n"
  "        ntau = 1/tadj/(a+b)\n"
  "	ninf = a/(a+b)\n"
  "}\n"
  "UNITSON\n"
  "\n"
  "FUNCTION efun(z) {\n"
  "	if (fabs(z) < 1e-4) {\n"
  "		efun = 1 - z/2\n"
  "	}else{\n"
  "		efun = z/(exp(z) - 1)\n"
  "	}\n"
  "}\n"
  "\n"
  "\n"
  "\n"
  "\n"
  "\n"
  "\n"
  ;
#endif