/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__Nafx
#define _nrn_initial _nrn_initial__Nafx
#define nrn_cur _nrn_cur__Nafx
#define _nrn_current _nrn_current__Nafx
#define nrn_jacob _nrn_jacob__Nafx
#define nrn_state _nrn_state__Nafx
#define _net_receive _net_receive__Nafx
#define rate rate__Nafx
#define states states__Nafx
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gnafbar _p[0]
#define ar2 _p[1]
#define ina _p[2]
#define gna _p[3]
#define m _p[4]
#define h _p[5]
#define s _p[6]
#define ena _p[7]
#define Dm _p[8]
#define Dh _p[9]
#define Ds _p[10]
#define minf _p[11]
#define hinf _p[12]
#define sinf _p[13]
#define mtau _p[14]
#define htau _p[15]
#define stau _p[16]
#define v _p[17]
#define _g _p[18]
#define _ion_ena *_ppvar[0]._pval
#define _ion_ina *_ppvar[1]._pval
#define _ion_dinadv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_alpr(void);
static void _hoc_alpv(void);
static void _hoc_betr(void);
static void _hoc_hbet(void);
static void _hoc_half(void);
static void _hoc_mbet(void);
static void _hoc_malf(void);
static void _hoc_rate(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_Nafx", _hoc_setdata,
"alpr_Nafx", _hoc_alpr,
"alpv_Nafx", _hoc_alpv,
"betr_Nafx", _hoc_betr,
"hbet_Nafx", _hoc_hbet,
"half_Nafx", _hoc_half,
"mbet_Nafx", _hoc_mbet,
"malf_Nafx", _hoc_malf,
"rate_Nafx", _hoc_rate,
0, 0
};
#define alpr alpr_Nafx
#define alpv alpv_Nafx
#define betr betr_Nafx
#define hbet hbet_Nafx
#define half half_Nafx
#define mbet mbet_Nafx
#define malf malf_Nafx
extern double alpr( _threadargsprotocomma_ double );
extern double alpv( _threadargsprotocomma_ double );
extern double betr( _threadargsprotocomma_ double );
extern double hbet( _threadargsprotocomma_ double );
extern double half( _threadargsprotocomma_ double );
extern double mbet( _threadargsprotocomma_ double );
extern double malf( _threadargsprotocomma_ double );
/* declare global and static user variables */
#define a0r a0r_Nafx
double a0r = 0.0003;
#define b0r b0r_Nafx
double b0r = 0.0003;
#define gmr gmr_Nafx
double gmr = 0.2;
#define taumin taumin_Nafx
double taumin = 30;
#define vvs vvs_Nafx
double vvs = 2;
#define vvh vvh_Nafx
double vvh = -58;
#define vhalfr vhalfr_Nafx
double vhalfr = -60;
#define zetas zetas_Nafx
double zetas = 12;
#define zetar zetar_Nafx
double zetar = 12;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"taumin_Nafx", "ms",
"vhalfr_Nafx", "mV",
"vvh_Nafx", "mV",
"vvs_Nafx", "mV",
"a0r_Nafx", "/ms",
"b0r_Nafx", "/ms",
"gnafbar_Nafx", "mho/cm2",
"ina_Nafx", "mA/cm2",
"gna_Nafx", "mho/cm2",
0,0
};
static double delta_t = 1;
static double h0 = 0;
static double m0 = 0;
static double s0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"taumin_Nafx", &taumin_Nafx,
"vhalfr_Nafx", &vhalfr_Nafx,
"vvh_Nafx", &vvh_Nafx,
"vvs_Nafx", &vvs_Nafx,
"a0r_Nafx", &a0r_Nafx,
"b0r_Nafx", &b0r_Nafx,
"zetar_Nafx", &zetar_Nafx,
"zetas_Nafx", &zetas_Nafx,
"gmr_Nafx", &gmr_Nafx,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"Nafx",
"gnafbar_Nafx",
"ar2_Nafx",
0,
"ina_Nafx",
"gna_Nafx",
0,
"m_Nafx",
"h_Nafx",
"s_Nafx",
0,
0};
static Symbol* _na_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 19, _prop);
/*initialize range parameters*/
gnafbar = 0;
ar2 = 1;
_prop->param = _p;
_prop->param_size = 19;
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_na_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ena */
_ppvar[1]._pval = &prop_ion->param[3]; /* ina */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dinadv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _nafx_reg() {
int _vectorized = 1;
_initlists();
ion_reg("na", -10000.);
_na_sym = hoc_lookup("na_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 19, 4);
hoc_register_dparam_semantics(_mechtype, 0, "na_ion");
hoc_register_dparam_semantics(_mechtype, 1, "na_ion");
hoc_register_dparam_semantics(_mechtype, 2, "na_ion");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 Nafx /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/nafx.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rate(_threadargsprotocomma_ double, double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[3], _dlist1[3];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
rate ( _threadargscomma_ v , ar2 ) ;
Dm = ( minf - m ) / mtau ;
Dh = ( hinf - h ) / htau ;
Ds = ( sinf - s ) / stau ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
rate ( _threadargscomma_ v , ar2 ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / mtau )) ;
Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / htau )) ;
Ds = Ds / (1. - dt*( ( ( ( - 1.0 ) ) ) / stau )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
rate ( _threadargscomma_ v , ar2 ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / mtau)))*(- ( ( ( minf ) ) / mtau ) / ( ( ( ( - 1.0 ) ) ) / mtau ) - m) ;
h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / htau)))*(- ( ( ( hinf ) ) / htau ) / ( ( ( ( - 1.0 ) ) ) / htau ) - h) ;
s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / stau)))*(- ( ( ( sinf ) ) / stau ) / ( ( ( ( - 1.0 ) ) ) / stau ) - s) ;
}
return 0;
}
double malf ( _threadargsprotocomma_ double _lv ) {
double _lmalf;
double _lva ;
_lva = _lv + 28.0 ;
if ( fabs ( _lva ) < 1e-04 ) {
_lmalf = - 0.2816 * ( - 9.3 + _lva * 0.5 ) ;
}
else {
_lmalf = - 0.2816 * ( _lv + 28.0 ) / ( - 1.0 + exp ( - _lva / 9.3 ) ) ;
}
return _lmalf;
}
static void _hoc_malf(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = malf ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double mbet ( _threadargsprotocomma_ double _lv ) {
double _lmbet;
double _lvb ;
_lvb = _lv + 1.0 ;
if ( fabs ( _lvb ) < 1e-04 ) {
_lmbet = 0.2464 * ( 6.0 + _lvb * 0.5 ) ;
}
else {
_lmbet = 0.2464 * ( _lv + 1.0 ) / ( - 1.0 + exp ( _lvb / 6.0 ) ) ;
}
return _lmbet;
}
static void _hoc_mbet(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = mbet ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double half ( _threadargsprotocomma_ double _lv ) {
double _lhalf;
double _lvc ;
_lvc = _lv + 40.1 ;
if ( fabs ( _lvc ) < 1e-04 ) {
_lhalf = 0.098 * ( 20.0 + _lvc * 0.5 ) ;
}
else {
_lhalf = 0.098 / exp ( _lvc + 43.1 / 20.0 ) ;
}
return _lhalf;
}
static void _hoc_half(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = half ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double hbet ( _threadargsprotocomma_ double _lv ) {
double _lhbet;
double _lvd ;
_lvd = _lv + 13.1 ;
if ( fabs ( _lvd ) < 1e-04 ) {
_lhbet = 1.4 * ( 10.0 + _lvd * 0.5 ) ;
}
else {
_lhbet = 1.4 / ( 1.0 + exp ( - ( _lvd - 13.1 ) / 10.0 ) ) ;
}
return _lhbet;
}
static void _hoc_hbet(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = hbet ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double alpv ( _threadargsprotocomma_ double _lv ) {
double _lalpv;
_lalpv = 1.0 / ( 1.0 + exp ( ( _lv - vvh ) / vvs ) ) ;
return _lalpv;
}
static void _hoc_alpv(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = alpv ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double alpr ( _threadargsprotocomma_ double _lv ) {
double _lalpr;
_lalpr = exp ( 1.e-3 * zetar * ( _lv - vhalfr ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
return _lalpr;
}
static void _hoc_alpr(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = alpr ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double betr ( _threadargsprotocomma_ double _lv ) {
double _lbetr;
_lbetr = exp ( 1.e-3 * zetar * gmr * ( _lv - vhalfr ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
return _lbetr;
}
static void _hoc_betr(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = betr ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int rate ( _threadargsprotocomma_ double _lv , double _lar2 ) {
double _lq10 , _lmsum , _lhsum , _lma , _lmb , _lha , _lhb , _lc ;
_lma = malf ( _threadargscomma_ _lv ) ;
_lmb = mbet ( _threadargscomma_ _lv ) ;
_lha = half ( _threadargscomma_ _lv ) ;
_lhb = hbet ( _threadargscomma_ _lv ) ;
_lmsum = _lma + _lmb ;
minf = _lma / _lmsum ;
mtau = 1.0 / ( _lmsum ) ;
_lhsum = _lha + _lhb ;
hinf = _lha / _lhsum ;
htau = 1.0 / ( _lhsum ) ;
stau = betr ( _threadargscomma_ _lv ) / ( a0r * ( 1.0 + alpr ( _threadargscomma_ _lv ) ) ) ;
if ( stau < taumin ) {
stau = taumin ;
}
_lc = alpv ( _threadargscomma_ _lv ) ;
sinf = _lc + _lar2 * ( 1.0 - _lc ) ;
return 0; }
static void _hoc_rate(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
rate ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 3;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ena = _ion_ena;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 3; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ena = _ion_ena;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_na_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_na_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_na_sym, _ppvar, 2, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
h = h0;
m = m0;
s = s0;
{
rate ( _threadargscomma_ v , ar2 ) ;
m = minf ;
h = hinf ;
s = sinf ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ena = _ion_ena;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
gna = gnafbar * m * m * m * h * s ;
ina = gna * ( v - 55.0 ) ;
}
_current += ina;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ena = _ion_ena;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dina;
_dina = ina;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dinadv += (_dina - ina)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ina += ina ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ena = _ion_ena;
{ states(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_slist1[1] = &(h) - _p; _dlist1[1] = &(Dh) - _p;
_slist1[2] = &(s) - _p; _dlist1[2] = &(Ds) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/nafx.mod";
static const char* nmodl_file_text =
": Fast Na+ channel\n"
": added the 's' attenuation system from hha2.mod\n"
": Kiki Sidiropoulou\n"
": September 27, 2007\n"
"\n"
"NEURON {\n"
" SUFFIX Nafx\n"
" USEION na READ ena WRITE ina\n"
" RANGE gnafbar, ina, gna, ar2\n"
"}\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
" \n"
"}\n"
"\n"
"INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}\n"
"\n"
"PARAMETER {\n"
" v (mV)\n"
" dt (ms)\n"
" gnafbar = 0 (mho/cm2)\n"
" :gnafbar= 0.086 (mho/cm2) <0,1e9>\n"
" ena = 55 (mV)\n"
" \n"
" :PARAMETERS FOR S ATTENUATION SYSTEM\n"
" taumin = 30 (ms) :min activation time for \"s\" attenuation system\n"
" vhalfr =-60 (mV) :half potential for \"s\" attenuation system, -60\n"
" vvh=-58 (mV) \n"
" vvs = 2 (mV)\n"
" a0r = 0.0003 (/ms)\n"
" b0r = 0.0003 (/ms)\n"
" : a0r = 0.0003 (ms)\n"
" :b0r = 0.0003 (ms)\n"
" zetar = 12 \n"
" zetas = 12 \n"
" gmr = 0.2 \n"
" ar2 = 1.0 :initialized parameter for location-dependent\n"
" :Na-conductance attenuation, \"s\", (ar=1 -> zero attenuation)\n"
"}\n"
"STATE {\n"
" m h s\n"
"}\n"
"ASSIGNED {\n"
" celsius (degC)\n"
" ina (mA/cm2)\n"
" minf \n"
" hinf\n"
" sinf \n"
" mtau (ms)\n"
" htau (ms)\n"
" stau (ms)\n"
" gna (mho/cm2)\n"
" \n"
"}\n"
"\n"
"\n"
"\n"
"INITIAL {\n"
" rate(v, ar2)\n"
" m = minf\n"
" h = hinf\n"
" s = sinf\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" gna = gnafbar*m*m*m*h*s\n"
" ina = gna*(v-55)\n"
" \n"
"}\n"
"\n"
"DERIVATIVE states {\n"
" rate(v, ar2)\n"
" m' = (minf-m)/mtau\n"
" h' = (hinf-h)/htau\n"
" s' = (sinf-s)/stau\n"
"}\n"
"\n"
"UNITSOFF\n"
"\n"
"FUNCTION malf( v){ LOCAL va \n"
" va=v+28\n"
" :va=v+28\n"
" if (fabs(va)<1e-04){\n"
" malf= -0.2816*(-9.3 + va*0.5)\n"
" :malf= -0.2816*(-9.3 + va*0.5)\n"
" }else{\n"
" malf = -0.2816*(v+28)/(-1+exp(-va/9.3))\n"
" }\n"
"}\n"
"\n"
"\n"
"FUNCTION mbet(v(mV))(/ms) { LOCAL vb \n"
" vb=v+1\n"
" :vb=v+1\n"
" if (fabs(vb)<1e-04){\n"
" mbet = 0.2464*(6+vb*0.5)\n"
" :mbet = 0.2464*(6 + vb*0.5)\n"
" }else{\n"
" mbet = 0.2464*(v+1)/(-1+exp(vb/6)) :/(-1+exp((v+1)/6))\n"
" }\n"
" } \n"
"\n"
"\n"
"FUNCTION half(v(mV))(/ms) { LOCAL vc \n"
" :vc=v+15.1\n"
" vc=v+40.1 :changed to 40.1 by kiki\n"
" if (fabs(vc)<1e-04){\n"
" half=0.098*(20 + vc*0.5)\n"
" }else{\n"
" half=0.098/exp(vc+43.1/20) :43.1, also spike train attenuation\n"
"}\n"
"}\n"
"\n"
"\n"
"FUNCTION hbet(v(mV))(/ms) { LOCAL vd\n"
" :vd=v+13.1\n"
" vd=v+13.1 :decreasing it increases the peak current\n"
" if (fabs(vd)<1e-04){\n"
" hbet=1.4*(10 + vd*0.5)\n"
" }else{\n"
" hbet=1.4/(1+exp(-(vd-13.1)/10)) :13.1 increasing it, increases the spike train attenuation and increases spike width\n"
"} \n"
"}\n"
"\n"
"\n"
":FUNCTIONS FOR S \n"
"FUNCTION alpv(v(mV)) {\n"
" alpv = 1/(1+exp((v-vvh)/vvs))\n"
"}\n"
"\n"
"\n"
"FUNCTION alpr(v(mV)) { :used in \"s\" activation system tau\n"
"\n"
" alpr = exp(1.e-3*zetar*(v-vhalfr)*9.648e4/(8.315*(273.16+celsius))) \n"
"}\n"
"\n"
"FUNCTION betr(v(mV)) { :used in \"s\" activation system tau\n"
"\n"
" betr = exp(1.e-3*zetar*gmr*(v-vhalfr)*9.648e4/(8.315*(273.16+celsius))) \n"
"}\n"
"\n"
"\n"
"\n"
"PROCEDURE rate(v (mV),ar2) {LOCAL q10, msum, hsum, ma, mb, ha, hb,c\n"
" \n"
"\n"
" ma=malf(v) mb=mbet(v) ha=half(v) hb=hbet(v)\n"
" \n"
" msum = ma+mb\n"
" minf = ma/msum\n"
" mtau = 1/(msum)\n"
" \n"
" \n"
" hsum=ha+hb\n"
" hinf=ha/hsum\n"
" htau = 1 / (hsum)\n"
"\n"
" stau = betr(v)/(a0r*(1+alpr(v))) \n"
" if (stau<taumin) {stau=taumin} :s activation tau\n"
" c = alpv(v)\n"
" sinf = c+ar2*(1-c) \n"
"}\n"
"\n"
" \n"
"UNITSON\n"
"\n"
"\n"
;
#endif