/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
 
#if METHOD3
extern int _method3;
#endif

#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
 
#define nrn_init _nrn_init__Nafx
#define _nrn_initial _nrn_initial__Nafx
#define nrn_cur _nrn_cur__Nafx
#define _nrn_current _nrn_current__Nafx
#define nrn_jacob _nrn_jacob__Nafx
#define nrn_state _nrn_state__Nafx
#define _net_receive _net_receive__Nafx 
#define rate rate__Nafx 
#define states states__Nafx 
 
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 /* Thread safe. No static _p or _ppvar. */
 
#define t _nt->_t
#define dt _nt->_dt
#define gnafbar _p[0]
#define ar2 _p[1]
#define ina _p[2]
#define gna _p[3]
#define m _p[4]
#define h _p[5]
#define s _p[6]
#define ena _p[7]
#define Dm _p[8]
#define Dh _p[9]
#define Ds _p[10]
#define minf _p[11]
#define hinf _p[12]
#define sinf _p[13]
#define mtau _p[14]
#define htau _p[15]
#define stau _p[16]
#define v _p[17]
#define _g _p[18]
#define _ion_ena	*_ppvar[0]._pval
#define _ion_ina	*_ppvar[1]._pval
#define _ion_dinadv	*_ppvar[2]._pval
 
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
 
#if defined(__cplusplus)
extern "C" {
#endif
 static int hoc_nrnpointerindex =  -1;
 static Datum* _extcall_thread;
 static Prop* _extcall_prop;
 /* external NEURON variables */
 extern double celsius;
 /* declaration of user functions */
 static void _hoc_alpr(void);
 static void _hoc_alpv(void);
 static void _hoc_betr(void);
 static void _hoc_hbet(void);
 static void _hoc_half(void);
 static void _hoc_mbet(void);
 static void _hoc_malf(void);
 static void _hoc_rate(void);
 static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
 
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif

 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _extcall_prop = _prop;
 }
 static void _hoc_setdata() {
 Prop *_prop, *hoc_getdata_range(int);
 _prop = hoc_getdata_range(_mechtype);
   _setdata(_prop);
 hoc_retpushx(1.);
}
 /* connect user functions to hoc names */
 static VoidFunc hoc_intfunc[] = {
 "setdata_Nafx", _hoc_setdata,
 "alpr_Nafx", _hoc_alpr,
 "alpv_Nafx", _hoc_alpv,
 "betr_Nafx", _hoc_betr,
 "hbet_Nafx", _hoc_hbet,
 "half_Nafx", _hoc_half,
 "mbet_Nafx", _hoc_mbet,
 "malf_Nafx", _hoc_malf,
 "rate_Nafx", _hoc_rate,
 0, 0
};
#define alpr alpr_Nafx
#define alpv alpv_Nafx
#define betr betr_Nafx
#define hbet hbet_Nafx
#define half half_Nafx
#define mbet mbet_Nafx
#define malf malf_Nafx
 extern double alpr( _threadargsprotocomma_ double );
 extern double alpv( _threadargsprotocomma_ double );
 extern double betr( _threadargsprotocomma_ double );
 extern double hbet( _threadargsprotocomma_ double );
 extern double half( _threadargsprotocomma_ double );
 extern double mbet( _threadargsprotocomma_ double );
 extern double malf( _threadargsprotocomma_ double );
 /* declare global and static user variables */
#define a0r a0r_Nafx
 double a0r = 0.0003;
#define b0r b0r_Nafx
 double b0r = 0.0003;
#define gmr gmr_Nafx
 double gmr = 0.2;
#define taumin taumin_Nafx
 double taumin = 30;
#define vvs vvs_Nafx
 double vvs = 2;
#define vvh vvh_Nafx
 double vvh = -58;
#define vhalfr vhalfr_Nafx
 double vhalfr = -60;
#define zetas zetas_Nafx
 double zetas = 12;
#define zetar zetar_Nafx
 double zetar = 12;
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 0,0,0
};
 static HocParmUnits _hoc_parm_units[] = {
 "taumin_Nafx", "ms",
 "vhalfr_Nafx", "mV",
 "vvh_Nafx", "mV",
 "vvs_Nafx", "mV",
 "a0r_Nafx", "/ms",
 "b0r_Nafx", "/ms",
 "gnafbar_Nafx", "mho/cm2",
 "ina_Nafx", "mA/cm2",
 "gna_Nafx", "mho/cm2",
 0,0
};
 static double delta_t = 1;
 static double h0 = 0;
 static double m0 = 0;
 static double s0 = 0;
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 "taumin_Nafx", &taumin_Nafx,
 "vhalfr_Nafx", &vhalfr_Nafx,
 "vvh_Nafx", &vvh_Nafx,
 "vvs_Nafx", &vvs_Nafx,
 "a0r_Nafx", &a0r_Nafx,
 "b0r_Nafx", &b0r_Nafx,
 "zetar_Nafx", &zetar_Nafx,
 "zetas_Nafx", &zetas_Nafx,
 "gmr_Nafx", &gmr_Nafx,
 0,0
};
 static DoubVec hoc_vdoub[] = {
 0,0,0
};
 static double _sav_indep;
 static void nrn_alloc(Prop*);
static void  nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
 static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void  nrn_jacob(_NrnThread*, _Memb_list*, int);
 
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
 
#define _cvode_ieq _ppvar[3]._i
 static void _ode_matsol_instance1(_threadargsproto_);
 /* connect range variables in _p that hoc is supposed to know about */
 static const char *_mechanism[] = {
 "7.7.0",
"Nafx",
 "gnafbar_Nafx",
 "ar2_Nafx",
 0,
 "ina_Nafx",
 "gna_Nafx",
 0,
 "m_Nafx",
 "h_Nafx",
 "s_Nafx",
 0,
 0};
 static Symbol* _na_sym;
 
extern Prop* need_memb(Symbol*);

static void nrn_alloc(Prop* _prop) {
	Prop *prop_ion;
	double *_p; Datum *_ppvar;
 	_p = nrn_prop_data_alloc(_mechtype, 19, _prop);
 	/*initialize range parameters*/
 	gnafbar = 0;
 	ar2 = 1;
 	_prop->param = _p;
 	_prop->param_size = 19;
 	_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
 	_prop->dparam = _ppvar;
 	/*connect ionic variables to this model*/
 prop_ion = need_memb(_na_sym);
 nrn_promote(prop_ion, 0, 1);
 	_ppvar[0]._pval = &prop_ion->param[0]; /* ena */
 	_ppvar[1]._pval = &prop_ion->param[3]; /* ina */
 	_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dinadv */
 
}
 static void _initlists();
  /* some states have an absolute tolerance */
 static Symbol** _atollist;
 static HocStateTolerance _hoc_state_tol[] = {
 0,0
};
 static void _update_ion_pointer(Datum*);
 extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);

 void _nafx_reg() {
	int _vectorized = 1;
  _initlists();
 	ion_reg("na", -10000.);
 	_na_sym = hoc_lookup("na_ion");
 	register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
     _nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
 #if NMODL_TEXT
  hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
  hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
  hoc_register_prop_size(_mechtype, 19, 4);
  hoc_register_dparam_semantics(_mechtype, 0, "na_ion");
  hoc_register_dparam_semantics(_mechtype, 1, "na_ion");
  hoc_register_dparam_semantics(_mechtype, 2, "na_ion");
  hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
 	hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
 	hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 Nafx /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/nafx.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
 }
static int _reset;
static char *modelname = "";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rate(_threadargsprotocomma_ double, double);
 
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
 static int _slist1[3], _dlist1[3];
 static int states(_threadargsproto_);
 
/*CVODE*/
 static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
   rate ( _threadargscomma_ v , ar2 ) ;
   Dm = ( minf - m ) / mtau ;
   Dh = ( hinf - h ) / htau ;
   Ds = ( sinf - s ) / stau ;
   }
 return _reset;
}
 static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
 rate ( _threadargscomma_ v , ar2 ) ;
 Dm = Dm  / (1. - dt*( ( ( ( - 1.0 ) ) ) / mtau )) ;
 Dh = Dh  / (1. - dt*( ( ( ( - 1.0 ) ) ) / htau )) ;
 Ds = Ds  / (1. - dt*( ( ( ( - 1.0 ) ) ) / stau )) ;
  return 0;
}
 /*END CVODE*/
 static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
   rate ( _threadargscomma_ v , ar2 ) ;
    m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / mtau)))*(- ( ( ( minf ) ) / mtau ) / ( ( ( ( - 1.0 ) ) ) / mtau ) - m) ;
    h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / htau)))*(- ( ( ( hinf ) ) / htau ) / ( ( ( ( - 1.0 ) ) ) / htau ) - h) ;
    s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / stau)))*(- ( ( ( sinf ) ) / stau ) / ( ( ( ( - 1.0 ) ) ) / stau ) - s) ;
   }
  return 0;
}
 
double malf ( _threadargsprotocomma_ double _lv ) {
   double _lmalf;
 double _lva ;
 _lva = _lv + 28.0 ;
   if ( fabs ( _lva ) < 1e-04 ) {
     _lmalf = - 0.2816 * ( - 9.3 + _lva * 0.5 ) ;
     }
   else {
     _lmalf = - 0.2816 * ( _lv + 28.0 ) / ( - 1.0 + exp ( - _lva / 9.3 ) ) ;
     }
   
return _lmalf;
 }
 
static void _hoc_malf(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  malf ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double mbet ( _threadargsprotocomma_ double _lv ) {
   double _lmbet;
 double _lvb ;
 _lvb = _lv + 1.0 ;
   if ( fabs ( _lvb ) < 1e-04 ) {
     _lmbet = 0.2464 * ( 6.0 + _lvb * 0.5 ) ;
     }
   else {
     _lmbet = 0.2464 * ( _lv + 1.0 ) / ( - 1.0 + exp ( _lvb / 6.0 ) ) ;
     }
   
return _lmbet;
 }
 
static void _hoc_mbet(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  mbet ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double half ( _threadargsprotocomma_ double _lv ) {
   double _lhalf;
 double _lvc ;
 _lvc = _lv + 40.1 ;
   if ( fabs ( _lvc ) < 1e-04 ) {
     _lhalf = 0.098 * ( 20.0 + _lvc * 0.5 ) ;
     }
   else {
     _lhalf = 0.098 / exp ( _lvc + 43.1 / 20.0 ) ;
     }
   
return _lhalf;
 }
 
static void _hoc_half(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  half ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double hbet ( _threadargsprotocomma_ double _lv ) {
   double _lhbet;
 double _lvd ;
 _lvd = _lv + 13.1 ;
   if ( fabs ( _lvd ) < 1e-04 ) {
     _lhbet = 1.4 * ( 10.0 + _lvd * 0.5 ) ;
     }
   else {
     _lhbet = 1.4 / ( 1.0 + exp ( - ( _lvd - 13.1 ) / 10.0 ) ) ;
     }
   
return _lhbet;
 }
 
static void _hoc_hbet(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  hbet ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double alpv ( _threadargsprotocomma_ double _lv ) {
   double _lalpv;
 _lalpv = 1.0 / ( 1.0 + exp ( ( _lv - vvh ) / vvs ) ) ;
   
return _lalpv;
 }
 
static void _hoc_alpv(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  alpv ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double alpr ( _threadargsprotocomma_ double _lv ) {
   double _lalpr;
 _lalpr = exp ( 1.e-3 * zetar * ( _lv - vhalfr ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
   
return _lalpr;
 }
 
static void _hoc_alpr(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  alpr ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double betr ( _threadargsprotocomma_ double _lv ) {
   double _lbetr;
 _lbetr = exp ( 1.e-3 * zetar * gmr * ( _lv - vhalfr ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
   
return _lbetr;
 }
 
static void _hoc_betr(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  betr ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
static int  rate ( _threadargsprotocomma_ double _lv , double _lar2 ) {
   double _lq10 , _lmsum , _lhsum , _lma , _lmb , _lha , _lhb , _lc ;
 _lma = malf ( _threadargscomma_ _lv ) ;
   _lmb = mbet ( _threadargscomma_ _lv ) ;
   _lha = half ( _threadargscomma_ _lv ) ;
   _lhb = hbet ( _threadargscomma_ _lv ) ;
   _lmsum = _lma + _lmb ;
   minf = _lma / _lmsum ;
   mtau = 1.0 / ( _lmsum ) ;
   _lhsum = _lha + _lhb ;
   hinf = _lha / _lhsum ;
   htau = 1.0 / ( _lhsum ) ;
   stau = betr ( _threadargscomma_ _lv ) / ( a0r * ( 1.0 + alpr ( _threadargscomma_ _lv ) ) ) ;
   if ( stau < taumin ) {
     stau = taumin ;
     }
   _lc = alpv ( _threadargscomma_ _lv ) ;
   sinf = _lc + _lar2 * ( 1.0 - _lc ) ;
    return 0; }
 
static void _hoc_rate(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r = 1.;
 rate ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) );
 hoc_retpushx(_r);
}
 
static int _ode_count(int _type){ return 3;}
 
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  ena = _ion_ena;
     _ode_spec1 (_p, _ppvar, _thread, _nt);
  }}
 
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { 
	double* _p; Datum* _ppvar;
 	int _i; _p = _pp; _ppvar = _ppd;
	_cvode_ieq = _ieq;
	for (_i=0; _i < 3; ++_i) {
		_pv[_i] = _pp + _slist1[_i];  _pvdot[_i] = _pp + _dlist1[_i];
		_cvode_abstol(_atollist, _atol, _i);
	}
 }
 
static void _ode_matsol_instance1(_threadargsproto_) {
 _ode_matsol1 (_p, _ppvar, _thread, _nt);
 }
 
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  ena = _ion_ena;
 _ode_matsol_instance1(_threadargs_);
 }}
 extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
 static void _update_ion_pointer(Datum* _ppvar) {
   nrn_update_ion_pointer(_na_sym, _ppvar, 0, 0);
   nrn_update_ion_pointer(_na_sym, _ppvar, 1, 3);
   nrn_update_ion_pointer(_na_sym, _ppvar, 2, 4);
 }

static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  int _i; double _save;{
  h = h0;
  m = m0;
  s = s0;
 {
   rate ( _threadargscomma_ v , ar2 ) ;
   m = minf ;
   h = hinf ;
   s = sinf ;
   }
 
}
}

static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v = _v;
  ena = _ion_ena;
 initmodel(_p, _ppvar, _thread, _nt);
 }
}

static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
   gna = gnafbar * m * m * m * h * s ;
   ina = gna * ( v - 55.0 ) ;
   }
 _current += ina;

} return _current;
}

static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
  ena = _ion_ena;
 _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
 	{ double _dina;
  _dina = ina;
 _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
  _ion_dinadv += (_dina - ina)/.001 ;
 	}
 _g = (_g - _rhs)/.001;
  _ion_ina += ina ;
#if CACHEVEC
  if (use_cachevec) {
	VEC_RHS(_ni[_iml]) -= _rhs;
  }else
#endif
  {
	NODERHS(_nd) -= _rhs;
  }
 
}
 
}

static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml];
#if CACHEVEC
  if (use_cachevec) {
	VEC_D(_ni[_iml]) += _g;
  }else
#endif
  {
     _nd = _ml->_nodelist[_iml];
	NODED(_nd) += _g;
  }
 
}
 
}

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v=_v;
{
  ena = _ion_ena;
 {   states(_p, _ppvar, _thread, _nt);
  } }}

}

static void terminal(){}

static void _initlists(){
 double _x; double* _p = &_x;
 int _i; static int _first = 1;
  if (!_first) return;
 _slist1[0] = &(m) - _p;  _dlist1[0] = &(Dm) - _p;
 _slist1[1] = &(h) - _p;  _dlist1[1] = &(Dh) - _p;
 _slist1[2] = &(s) - _p;  _dlist1[2] = &(Ds) - _p;
_first = 0;
}

#if defined(__cplusplus)
} /* extern "C" */
#endif

#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/nafx.mod";
static const char* nmodl_file_text = 
  ": Fast Na+ channel\n"
  ": added the 's' attenuation system from hha2.mod\n"
  ": Kiki Sidiropoulou\n"
  ": September 27, 2007\n"
  "\n"
  "NEURON {\n"
  "	SUFFIX Nafx\n"
  "	USEION na READ ena WRITE ina\n"
  "	RANGE gnafbar, ina, gna, ar2\n"
  "}\n"
  "\n"
  "UNITS {\n"
  "	(mA) = (milliamp)\n"
  "	(mV) = (millivolt)\n"
  "	\n"
  "}\n"
  "\n"
  "INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}\n"
  "\n"
  "PARAMETER {\n"
  "	v (mV)\n"
  "	dt (ms)\n"
  "	gnafbar	= 0 (mho/cm2)\n"
  "	:gnafbar= 0.086 (mho/cm2) <0,1e9>\n"
  "	ena = 55 (mV)\n"
  "	\n"
  "	:PARAMETERS FOR S ATTENUATION SYSTEM\n"
  "	taumin = 30 (ms)  :min activation time for \"s\" attenuation system\n"
  "        vhalfr =-60 (mV)       :half potential for \"s\" attenuation system, -60\n"
  "        vvh=-58		(mV) \n"
  " 	vvs = 2 (mV)\n"
  "	a0r = 0.0003 (/ms)\n"
  "        b0r = 0.0003 (/ms)\n"
  "       : a0r = 0.0003 (ms)\n"
  "        :b0r = 0.0003 (ms)\n"
  "        zetar = 12    \n"
  "	zetas = 12   \n"
  "        gmr = 0.2   \n"
  "	ar2 = 1.0               :initialized parameter for location-dependent\n"
  "                                :Na-conductance attenuation, \"s\", (ar=1 -> zero attenuation)\n"
  "}\n"
  "STATE {\n"
  "	m h s\n"
  "}\n"
  "ASSIGNED {\n"
  "	celsius (degC)\n"
  "	ina (mA/cm2)\n"
  "	minf \n"
  "	hinf\n"
  "	sinf \n"
  "	mtau (ms)\n"
  "	htau (ms)\n"
  "	stau (ms)\n"
  "	gna (mho/cm2)\n"
  "	\n"
  "}\n"
  "\n"
  "\n"
  "\n"
  "INITIAL {\n"
  "	rate(v, ar2)\n"
  "	m = minf\n"
  "	h = hinf\n"
  "	s = sinf\n"
  "}\n"
  "\n"
  "BREAKPOINT {\n"
  "	SOLVE states METHOD cnexp\n"
  "	gna = gnafbar*m*m*m*h*s\n"
  "	ina = gna*(v-55)\n"
  "	\n"
  "}\n"
  "\n"
  "DERIVATIVE states {\n"
  "	rate(v, ar2)\n"
  "	m' = (minf-m)/mtau\n"
  "	h' = (hinf-h)/htau\n"
  "	s' = (sinf-s)/stau\n"
  "}\n"
  "\n"
  "UNITSOFF\n"
  "\n"
  "FUNCTION malf( v){ LOCAL va \n"
  "	va=v+28\n"
  "	:va=v+28\n"
  "	if (fabs(va)<1e-04){\n"
  "	   malf= -0.2816*(-9.3 + va*0.5)\n"
  "	   :malf= -0.2816*(-9.3 + va*0.5)\n"
  "	}else{\n"
  "	   malf = -0.2816*(v+28)/(-1+exp(-va/9.3))\n"
  "	}\n"
  "}\n"
  "\n"
  "\n"
  "FUNCTION mbet(v(mV))(/ms) { LOCAL vb \n"
  "	vb=v+1\n"
  "	:vb=v+1\n"
  "	if (fabs(vb)<1e-04){\n"
  "	    mbet = 0.2464*(6+vb*0.5)\n"
  "	    :mbet = 0.2464*(6 + vb*0.5)\n"
  "	}else{\n"
  "	   mbet = 0.2464*(v+1)/(-1+exp(vb/6))	  :/(-1+exp((v+1)/6))\n"
  "	}\n"
  "	}	\n"
  "\n"
  "\n"
  "FUNCTION half(v(mV))(/ms) { LOCAL vc \n"
  "	:vc=v+15.1\n"
  "	vc=v+40.1	:changed to 40.1 by kiki\n"
  "	if (fabs(vc)<1e-04){\n"
  "	   half=0.098*(20 + vc*0.5)\n"
  "	}else{\n"
  "	   half=0.098/exp(vc+43.1/20)  :43.1, also spike train attenuation\n"
  "}\n"
  "}\n"
  "\n"
  "\n"
  "FUNCTION hbet(v(mV))(/ms) { LOCAL vd\n"
  "	:vd=v+13.1\n"
  "	vd=v+13.1  :decreasing it increases the peak current\n"
  "	if (fabs(vd)<1e-04){\n"
  "	   hbet=1.4*(10 + vd*0.5)\n"
  "	}else{\n"
  "	   hbet=1.4/(1+exp(-(vd-13.1)/10))  :13.1 increasing it, increases the spike train attenuation and increases spike width\n"
  "} \n"
  "}\n"
  "\n"
  "\n"
  ":FUNCTIONS FOR S \n"
  "FUNCTION alpv(v(mV)) {\n"
  "         alpv = 1/(1+exp((v-vvh)/vvs))\n"
  "}\n"
  "\n"
  "\n"
  "FUNCTION alpr(v(mV)) {       :used in \"s\" activation system tau\n"
  "\n"
  "  alpr = exp(1.e-3*zetar*(v-vhalfr)*9.648e4/(8.315*(273.16+celsius))) \n"
  "}\n"
  "\n"
  "FUNCTION betr(v(mV)) {       :used in \"s\" activation system tau\n"
  "\n"
  "  betr = exp(1.e-3*zetar*gmr*(v-vhalfr)*9.648e4/(8.315*(273.16+celsius))) \n"
  "}\n"
  "\n"
  "\n"
  "\n"
  "PROCEDURE rate(v (mV),ar2) {LOCAL q10, msum, hsum, ma, mb, ha, hb,c\n"
  "	\n"
  "\n"
  "	ma=malf(v) mb=mbet(v) ha=half(v) hb=hbet(v)\n"
  "	\n"
  "	msum = ma+mb\n"
  "	minf = ma/msum\n"
  "	mtau = 1/(msum)\n"
  "	\n"
  "	\n"
  "	hsum=ha+hb\n"
  "	hinf=ha/hsum\n"
  "	htau = 1 / (hsum)\n"
  "\n"
  "	stau = betr(v)/(a0r*(1+alpr(v))) \n"
  "	if (stau<taumin) {stau=taumin} :s activation tau\n"
  "	c = alpv(v)\n"
  "	sinf = c+ar2*(1-c) 	\n"
  "}\n"
  "\n"
  "	\n"
  "UNITSON\n"
  "\n"
  "\n"
  ;
#endif