/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__nax
#define _nrn_initial _nrn_initial__nax
#define nrn_cur _nrn_cur__nax
#define _nrn_current _nrn_current__nax
#define nrn_jacob _nrn_jacob__nax
#define nrn_state _nrn_state__nax
#define _net_receive _net_receive__nax
#define states states__nax
#define trates trates__nax
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define sh _p[0]
#define gbar _p[1]
#define ina _p[2]
#define m _p[3]
#define h _p[4]
#define ena _p[5]
#define g _p[6]
#define minf _p[7]
#define hinf _p[8]
#define mtau _p[9]
#define htau _p[10]
#define Dm _p[11]
#define Dh _p[12]
#define v _p[13]
#define _g _p[14]
#define _ion_ena *_ppvar[0]._pval
#define _ion_ina *_ppvar[1]._pval
#define _ion_dinadv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_trap0(void);
static void _hoc_trates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_nax", _hoc_setdata,
"trap0_nax", _hoc_trap0,
"trates_nax", _hoc_trates,
0, 0
};
#define trap0 trap0_nax
extern double trap0( _threadargsprotocomma_ double , double , double , double );
/* declare global and static user variables */
#define Rd Rd_nax
double Rd = 0.03;
#define Rg Rg_nax
double Rg = 0.01;
#define Rb Rb_nax
double Rb = 0.124;
#define Ra Ra_nax
double Ra = 0.4;
#define hmin hmin_nax
double hmin = 0.5;
#define mmin mmin_nax
double mmin = 0.02;
#define qinf qinf_nax
double qinf = 4;
#define q10 q10_nax
double q10 = 2;
#define qg qg_nax
double qg = 1.5;
#define qd qd_nax
double qd = 1.5;
#define qa qa_nax
double qa = 7.2;
#define thinf thinf_nax
double thinf = -50;
#define thi2 thi2_nax
double thi2 = -45;
#define thi1 thi1_nax
double thi1 = -45;
#define tha tha_nax
double tha = -30;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"tha_nax", "mV",
"qa_nax", "mV",
"Ra_nax", "/ms",
"Rb_nax", "/ms",
"thi1_nax", "mV",
"thi2_nax", "mV",
"qd_nax", "mV",
"qg_nax", "mV",
"Rg_nax", "/ms",
"Rd_nax", "/ms",
"thinf_nax", "mV",
"qinf_nax", "mV",
"sh_nax", "mV",
"gbar_nax", "mho/cm2",
"ina_nax", "mA/cm2",
0,0
};
static double delta_t = 0.01;
static double h0 = 0;
static double m0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"tha_nax", &tha_nax,
"qa_nax", &qa_nax,
"Ra_nax", &Ra_nax,
"Rb_nax", &Rb_nax,
"thi1_nax", &thi1_nax,
"thi2_nax", &thi2_nax,
"qd_nax", &qd_nax,
"qg_nax", &qg_nax,
"mmin_nax", &mmin_nax,
"hmin_nax", &hmin_nax,
"q10_nax", &q10_nax,
"Rg_nax", &Rg_nax,
"Rd_nax", &Rd_nax,
"thinf_nax", &thinf_nax,
"qinf_nax", &qinf_nax,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"nax",
"sh_nax",
"gbar_nax",
0,
"ina_nax",
0,
"m_nax",
"h_nax",
0,
0};
static Symbol* _na_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 15, _prop);
/*initialize range parameters*/
sh = 0;
gbar = 0.01;
_prop->param = _p;
_prop->param_size = 15;
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_na_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ena */
_ppvar[1]._pval = &prop_ion->param[3]; /* ina */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dinadv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _nax_BS_reg() {
int _vectorized = 1;
_initlists();
ion_reg("na", -10000.);
_na_sym = hoc_lookup("na_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 15, 4);
hoc_register_dparam_semantics(_mechtype, 0, "na_ion");
hoc_register_dparam_semantics(_mechtype, 1, "na_ion");
hoc_register_dparam_semantics(_mechtype, 2, "na_ion");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 nax /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/nax_BS.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "nax";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int trates(_threadargsprotocomma_ double, double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[2], _dlist1[2];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
trates ( _threadargscomma_ v , sh ) ;
Dm = ( minf - m ) / mtau ;
Dh = ( hinf - h ) / htau ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
trates ( _threadargscomma_ v , sh ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / mtau )) ;
Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / htau )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
trates ( _threadargscomma_ v , sh ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / mtau)))*(- ( ( ( minf ) ) / mtau ) / ( ( ( ( - 1.0 ) ) ) / mtau ) - m) ;
h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / htau)))*(- ( ( ( hinf ) ) / htau ) / ( ( ( ( - 1.0 ) ) ) / htau ) - h) ;
}
return 0;
}
static int trates ( _threadargsprotocomma_ double _lvm , double _lsh2 ) {
double _la , _lb , _lqt ;
_lqt = pow( q10 , ( ( celsius - 24.0 ) / 10.0 ) ) ;
_la = trap0 ( _threadargscomma_ _lvm , tha + _lsh2 , Ra , qa ) ;
_lb = trap0 ( _threadargscomma_ - _lvm , - tha - _lsh2 , Rb , qa ) ;
mtau = 1.0 / ( _la + _lb ) / _lqt ;
if ( mtau < mmin ) {
mtau = mmin ;
}
minf = _la / ( _la + _lb ) ;
_la = trap0 ( _threadargscomma_ _lvm , thi1 + _lsh2 , Rd , qd ) ;
_lb = trap0 ( _threadargscomma_ - _lvm , - thi2 - _lsh2 , Rg , qg ) ;
htau = 1.0 / ( _la + _lb ) / _lqt ;
if ( htau < hmin ) {
htau = hmin ;
}
hinf = 1.0 / ( 1.0 + exp ( ( _lvm - thinf - _lsh2 ) / qinf ) ) ;
return 0; }
static void _hoc_trates(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
trates ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) );
hoc_retpushx(_r);
}
double trap0 ( _threadargsprotocomma_ double _lv , double _lth , double _la , double _lq ) {
double _ltrap0;
if ( fabs ( _lv - _lth ) > 1e-6 ) {
_ltrap0 = _la * ( _lv - _lth ) / ( 1.0 - exp ( - ( _lv - _lth ) / _lq ) ) ;
}
else {
_ltrap0 = _la * _lq ;
}
return _ltrap0;
}
static void _hoc_trap0(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = trap0 ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) , *getarg(3) , *getarg(4) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 2;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ena = _ion_ena;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 2; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ena = _ion_ena;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_na_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_na_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_na_sym, _ppvar, 2, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
h = h0;
m = m0;
{
trates ( _threadargscomma_ v , sh ) ;
m = minf ;
h = hinf ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ena = _ion_ena;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
g = gbar * m * m * m * h ;
ina = g * ( v - ena ) ;
}
_current += ina;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ena = _ion_ena;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dina;
_dina = ina;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dinadv += (_dina - ina)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ina += ina ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ena = _ion_ena;
{ states(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_slist1[1] = &(h) - _p; _dlist1[1] = &(Dh) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/nax_BS.mod";
static const char* nmodl_file_text =
"TITLE nax\n"
": Na current for axon. No slow inact.\n"
": M.Migliore Jul. 1997\n"
": added sh to account for higher threshold M.Migliore, Apr.2002\n"
": thread-safe 2010-05-31 Ben Suter\n"
": 2010-11-07 Ben Suter reformatting, renaming thegna to g, setting sh = 0 (was 8 mV)\n"
":\n"
": :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\n"
": Copyright 2011, Benjamin Suter (for changes only)\n"
": Used in model of corticospinal neuron BS0284 and published as:\n"
": \"Intrinsic electrophysiology of mouse corticospinal neurons: a characteristic set of features embodied in a realistic computational model\"\n"
": by Benjamin Suter, Michele Migliore, and Gordon Shepherd\n"
": Submitted September 2011\n"
": :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\n"
"\n"
"\n"
"NEURON {\n"
" SUFFIX nax\n"
" USEION na READ ena WRITE ina\n"
" RANGE gbar, ina, sh\n"
": GLOBAL minf, hinf, mtau, htau,thinf, qinf, Rb, Rg, qg\n"
"}\n"
"\n"
"PARAMETER {\n"
" v (mV)\n"
" celsius (degC)\n"
" ena (mV) : must be explicitly def. in hoc\n"
"\n"
" sh = 0 (mV)\n"
" gbar = 0.010 (mho/cm2)\n"
"\n"
" tha = -30 (mV) : v 1/2 for act\n"
" qa = 7.2 (mV) : act slope (4.5)\n"
" Ra = 0.4 (/ms) : open (v)\n"
" Rb = 0.124 (/ms) : close (v)\n"
"\n"
" thi1 = -45 (mV) : v 1/2 for inact\n"
" thi2 = -45 (mV) : v 1/2 for inact\n"
" qd = 1.5 (mV) : inact tau slope\n"
" qg = 1.5 (mV)\n"
" mmin = 0.02\n"
" hmin = 0.5\n"
" q10 = 2\n"
" Rg = 0.01 (/ms) : inact recov (v)\n"
" Rd = 0.03 (/ms) : inact (v)\n"
"\n"
" thinf = -50 (mV) : inact inf slope\n"
" qinf = 4 (mV) : inact inf slope\n"
"}\n"
"\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
" (pS) = (picosiemens)\n"
" (um) = (micron)\n"
"}\n"
"\n"
"ASSIGNED {\n"
" ina (mA/cm2)\n"
" g (mho/cm2)\n"
" minf\n"
" hinf\n"
" mtau (ms)\n"
" htau (ms)\n"
"}\n"
"\n"
"STATE { m h}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" g = gbar*m*m*m*h\n"
" ina = g * (v - ena)\n"
"}\n"
"\n"
"INITIAL {\n"
" trates(v,sh)\n"
" m = minf\n"
" h = hinf\n"
"}\n"
"\n"
"DERIVATIVE states {\n"
" trates(v,sh)\n"
" m' = (minf-m)/mtau\n"
" h' = (hinf-h)/htau\n"
"}\n"
"\n"
"PROCEDURE trates(vm,sh2) {\n"
" LOCAL a, b, qt\n"
" qt = q10^((celsius-24)/10)\n"
"\n"
" a = trap0(vm,tha+sh2,Ra,qa)\n"
" b = trap0(-vm,-tha-sh2,Rb,qa)\n"
" mtau = 1/(a+b)/qt\n"
" if (mtau<mmin) {\n"
" mtau = mmin\n"
" }\n"
" minf = a/(a+b)\n"
"\n"
" a = trap0(vm,thi1+sh2,Rd,qd)\n"
" b = trap0(-vm,-thi2-sh2,Rg,qg)\n"
" htau = 1/(a+b)/qt\n"
" if (htau<hmin) {\n"
" htau = hmin\n"
" }\n"
" hinf = 1/(1+exp((vm-thinf-sh2)/qinf))\n"
"}\n"
"\n"
"FUNCTION trap0(v,th,a,q) {\n"
" if (fabs(v-th) > 1e-6) {\n"
" trap0 = a * (v - th) / (1 - exp(-(v - th)/q))\n"
" } else {\n"
" trap0 = a * q\n"
" }\n"
"}\n"
;
#endif