COMMENT
Two state kinetic scheme synapse described by rise time tau1,
and decay time constant tau2. The normalized peak conductance is 1.
Decay time MUST be greater than rise time.
The solution of A->G->bath with rate constants 1/tau1 and 1/tau2 is
A = a*exp(-t/tau1) and
G = a*tau2/(tau2-tau1)*(-exp(-t/tau1) + exp(-t/tau2))
where tau1 < tau2
If tau2-tau1 is very small compared to tau1, this is an alphasynapse with time constant tau2.
If tau1/tau2 is very small, this is single exponential decay with time constant tau2.
The factor is evaluated in the initial block
such that an event of weight 1 generates a
peak conductance of 1.
Because the solution is a sum of exponentials, the
coupled equations can be solved as a pair of independent equations
by the more efficient cnexp method.
ENDCOMMENT
NEURON {
POINT_PROCESS mygaba
RANGE tau1, tau2, e, i, A, B, aW, decay, decay_add, deltat, deltat_inv, tlast
RANGE tau_d, tau_a, tau_decay, tau_da
NONSPECIFIC_CURRENT i
RANGE g
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(uS) = (microsiemens)
}
PARAMETER {
tau_decay = 1e3
tau_da = 10
tau_d = 10
tau_a = 10
tau1 = 0.1 (ms) <1e-9,1e9>
tau2 = 3 (ms) <1e-9,1e9>
e=0 (mV)
}
ASSIGNED {
v (mV)
i (nA)
g (uS)
factor
spike
deltat
deltat_inv
tlast
rise_add
}
STATE {
A (uS)
B (uS)
aW
spikeadder
rise
decay
decay_add
}
INITIAL {
LOCAL tp
if (tau1/tau2 > 0.9999) {
tau1 = 0.9999*tau2
}
if (tau1/tau2 < 1e-9) {
tau1 = tau2*1e-9
}
tlast = 0
spike = 0
decay_add = 0
rise_add = 0
spikeadder = 0
decay = 0
rise = 0
A = 0
B = 0
tp = (tau1*tau2)/(tau2 - tau1) * log(tau2/tau1)
factor = -exp(-tp/tau1) + exp(-tp/tau2)
factor = 1/factor
}
BREAKPOINT {
SOLVE state METHOD cnexp
g = B - A
i = g*(v - e)
}
DERIVATIVE state {
decay' = -decay/tau_decay + decay_add*40
decay_add' = -decay_add/tau_da
aW = 1/(decay+1)
A' = -A/tau1
B' = -B/tau2
}
NET_RECEIVE(weight (uS)) {
deltat = t - tlast
deltat_inv = 1/deltat
decay_add = deltat_inv*0.1
if (deltat > 100) {
deltat = 100
}
tlast = t
A = A + aW*weight*factor
B = B + aW*weight*factor
}