TITLE BK KCA channel for nucleus accumbens model
: large conductance kca channel
NEURON {
SUFFIX hBKKCa
USEION k READ ek WRITE ik
USEION ca READ cai
RANGE gkbar,ik
}
UNITS {
(molar) = (1/liter)
(mM) = (millimolar)
(S) = (siemens)
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
gkbar = 0.12 (S/cm2)
mvhalf = 2.6 (mV) : Gong 2001 pg 727
mslope = -17.0 (mV) : Gong 2001 pg 727
mshift = 0 (mV)
hvhalf = -86.15 (mV) : Ding & Lingle 2002 Fig 3B 10 uM Ca
hslope = 11.61 (mV) : Ding & Lingle 2002 Fig 3B 10 uM Ca
hshift = 0 (mV)
pvhalf = -7.4 (mM) : match to Gong 2001 Fig 3
pslope = -0.65 (mM) : match to Gong 2001 Fig 3
pshift = 0 (mM)
mtau = 0.133 (ms) : Kang, Huguenard 1996
htau = 1.27 (ms) : Hicks & Marrion 1998 & Kang, Huguenard 1996
mpower = 3
ppower = 8 : match to Gong 2001 Fig 3
hpower = 1
}
ASSIGNED {
v (mV)
cai (mM)
ik (mA/cm2)
ek (mV)
po
minf
hinf
}
STATE { m h }
BREAKPOINT {
SOLVE state METHOD cnexp
ik = po^ppower * gkbar * m^mpower * h^hpower * (v - ek)
}
DERIVATIVE state {
calc_po(cai)
settables(v)
m' = (minf - m) / mtau
h' = (hinf - h) / htau
}
PROCEDURE settables( v (mV) ) {
TABLE minf, hinf DEPEND mshift, hshift
FROM -100 TO 100 WITH 201
minf = 1 / ( 1 + exp( (v-mvhalf-mshift) / mslope) )
hinf = 1 / ( 1 + exp( (v-hvhalf-hshift) / hslope) )
}
PROCEDURE calc_po( cai(mM) ) {
po = 1 / ( 1 + exp( (cai-pvhalf-pshift) / pslope) )
}
COMMENT
Gong LW, Gao TM, Huang H, Tong Z. Properties of large conductance
calcium-activated potassium channels in pyramidal neurons from the
hippocampal CA1 region of adult rats. Jap J Phys 51: 725-31, 2001.
ENDCOMMENT