TITLE Cerebellum Golgi Cell Model
COMMENT
ENDCOMMENT
NEURON {
SUFFIX Golgi_KA
USEION k READ ek WRITE ik
RANGE gkbar, ik, g
RANGE a, b, a_inf, tau_a, b_inf, tau_b, tcorr
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
gkbar= 0.008 (mho/cm2)
Aalpha_a = 0.8147 (/ms)
Kalpha_a = -23.32708 (mV)
V0alpha_a = -9.17203 (mV)
Abeta_a = 0.1655 (/ms)
Kbeta_a = 19.47175 (mV)
V0beta_a = -18.27914 (mV)
Aalpha_b = 0.0368 (/ms)
Kalpha_b = 12.8433 (mV)
V0alpha_b = -111.33209 (mV)
Abeta_b = 0.0345(/ms)
Kbeta_b = -8.90123 (mV)
V0beta_b = -49.9537 (mV)
V0_ainf = -38(mV)
K_ainf = -17(mV)
V0_binf = -78.8 (mV)
K_binf = 8.4 (mV)
v (mV)
ek (mV)
celsius (degC)
Q10 = 3 (1)
}
STATE {
a
b
}
ASSIGNED {
ik (mA/cm2)
a_inf
b_inf
tau_a (ms)
tau_b (ms)
g (mho/cm2)
alpha_a (/ms)
beta_a (/ms)
alpha_b (/ms)
beta_b (/ms)
tcorr (1)
}
INITIAL {
rate(v)
a = a_inf
b = b_inf
}
BREAKPOINT {
SOLVE states METHOD derivimplicit
g = gkbar*a*a*a*b
ik = g*(v - ek)
alpha_a = alp_a(v)
beta_a = bet_a(v)
alpha_b = alp_b(v)
beta_b = bet_b(v)
}
DERIVATIVE states {
rate(v)
a' =(a_inf - a)/tau_a
b' =(b_inf - b)/tau_b
}
FUNCTION alp_a(v(mV))(/ms) {
tcorr = Q10^((celsius-25.5(degC))/10(degC))
alp_a = tcorr*Aalpha_a*sigm(v-V0alpha_a,Kalpha_a)
}
FUNCTION bet_a(v(mV))(/ms) {
tcorr = Q10^((celsius-25.5(degC))/10(degC))
bet_a = tcorr*Abeta_a/(exp((v-V0beta_a)/Kbeta_a))
}
FUNCTION alp_b(v(mV))(/ms) {
tcorr = Q10^((celsius-25.5(degC))/10(degC))
alp_b = tcorr*Aalpha_b*sigm(v-V0alpha_b,Kalpha_b)
}
FUNCTION bet_b(v(mV))(/ms) {
tcorr = Q10^((celsius-25.5(degC))/10(degC))
bet_b = tcorr*Abeta_b*sigm(v-V0beta_b,Kbeta_b)
}
PROCEDURE rate(v (mV)) {LOCAL a_a, b_a, a_b, b_b
TABLE a_inf, tau_a, b_inf, tau_b
DEPEND Aalpha_a, Kalpha_a, V0alpha_a,
Abeta_a, Kbeta_a, V0beta_a,
Aalpha_b, Kalpha_b, V0alpha_b,
Abeta_b, Kbeta_b, V0beta_b, celsius FROM -100 TO 30 WITH 13000
a_a = alp_a(v)
b_a = bet_a(v)
a_b = alp_b(v)
b_b = bet_b(v)
a_inf = 1/(1+exp((v-V0_ainf)/K_ainf))
tau_a = 1/(a_a + b_a)
b_inf = 1/(1+exp((v-V0_binf)/K_binf))
tau_b = 1/(a_b + b_b)
}
FUNCTION linoid(x (mV),y (mV)) (mV) {
if (fabs(x/y) < 1e-6) {
linoid = y*(1 - x/y/2)
}else{
linoid = x/(exp(x/y) - 1)
}
}
FUNCTION sigm(x (mV),y (mV)) {
sigm = 1/(exp(x/y) + 1)
}