: FORREST MD (2014) Simulation of alcohol action upon a detailed Purkinje neuron model and a simpler surrogate model that runs >400 times faster. BMC Neuroscience
TITLE decay of submembrane calcium concentration
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
:
: This file contains two mechanisms:
:
: 1. Simple model of ATPase pump with 3 kinetic constants (Destexhe 1992)
:
: Cai + P <-> CaP -> Cao + P (k1,k2,k3)
:
: A Michaelis-Menten approximation is assumed, which reduces the complexity
: of the system to 2 parameters:
: kt = <tot enzyme concentration> * k3 -> TIME CONSTANT OF THE PUMP
: kd = k2/k1 (dissociation constant) -> EQUILIBRIUM CALCIUM VALE
: The values of these parameters are chosen assuming a high affinity of
: the pump to calcium and a low transport capacity (cfr. Blaustein,
: TINS, 11: 438, 1988, and references therein).
:
: For further information about this this mechanism, see Destexhe,A.
: Babloysntz,A. and Sejnowski,TJ. Ionic mechanisms for intrinsic slow
: oscillations in thalamic relay neurons. Biophys.J.65:1538-1552,1933.
:
:
: 2. Simple first-order decay or buffering:
:
: Cai + B <->...
:
: which can be ritten as:
:
: dCai/dt = (cainf-Cai) / taur
:
: where cainf is the equilibrium intracellular calcium value (usually
: inthe range of 200-300 nM) and tsur is the time constant of calcium
: removal. The dynamics of submembranal calcium is usually thought to
: be relativly fast, inthe 1-10 millisecond range (see Balaustein,
: TINS, 11:438,1988).
:
: All variables are range variables
:
: Written by Alain Destexhe, Salk Institute,Nov 12,1992
:
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX cad
USEION ca READ ica,cai WRITE cai
: USEION Ca READ Cai VALENCE 2
RANGE depth,kt,kd,cainf,taur
}
UNITS {
(molar) = (1/liter) :moles do not appear in units
(mM) = (millimolar)
(um) = (micron)
(mA) = (milliamp)
(msM) = (ms mM)
}
CONSTANT{
FARADAY = 96489 (coul) : moles do not appear in units
}
PARAMETER {
depth = .1 (um) : depth of shell
taur = 1e10 (ms) : remove first-order decay
cainf = 2.4e-4 (mM)
kt = 1e-4 (mM/ms)
kd = 1e-4 (mM)
}
STATE {
cai (mM)
}
INITIAL {
cai = kd
}
ASSIGNED{
ica (mA/cm2)
drive_channel (mM/ms)
drive_pump (mM/ms)
Cai (mM)
}
BREAKPOINT{
SOLVE state METHOD euler
}
DERIVATIVE state {
drive_channel = -(10000)*ica/(2*FARADAY*depth)
if(drive_channel <= 0.) {drive_channel = 0.}:cannot pump inward
drive_pump = -kt*cai/(cai+kd) :Michaelis-Menten
cai' =drive_channel+drive_pump+(cainf-cai)/taur
}