: HH P-type Calcium current
: FORREST MD (2014) Two Compartment Model of the Cerebellar Purkinje Neuron
NEURON {
SUFFIX captain
USEION ca READ cai, cao WRITE ica
RANGE pcabar
GLOBAL minf,mtau
GLOBAL monovalConc, monovalPerm
}
UNITS {
(mV) = (millivolt)
(mA) = (milliamp)
(mM) = (milli/liter)
F = 9.6485e4 (coul)
R = 8.3145 (joule/degC)
}
PARAMETER {
v (mV)
pcabar = .00005 (cm/s)
monovalConc = 140 (mM)
monovalPerm = 0
cai (milli/liter)
cao (milli/liter)
Q10 = 3 (1)
Q10TEMP = 22 (degC)
}
ASSIGNED {
ica (mA/cm2)
minf
mtau (ms)
T (degC)
E (volts)
celsius (degC)
qt (1)
}
STATE {
m
}
INITIAL {
rates(v)
m = minf
: qt = Q10^((celsius-Q10TEMP)/10)
qt = 1
}
BREAKPOINT {
SOLVE states METHOD cnexp
ica = (1e3) * pcabar * m * ghk(v, cai, cao, 2)
}
DERIVATIVE states {
rates(v)
m' = (minf - m)/mtau
}
FUNCTION ghk( v(mV), ci(mM), co(mM), z) (coul/cm3) { LOCAL Ci
T = 22 + 273.19 : Kelvin
E = (1e-3) * v
Ci = ci + (monovalPerm) * (monovalConc) : Monovalent permeability
if (fabs(1-exp(-z*(F*E)/(R*T))) < 1e-6) { : denominator is small -> Taylor series
ghk = (1e-6) * z * F * (Ci-co*exp(-z*(F*E)/(R*T)))*(1-(z*(F*E)/(R*T)))
} else {
ghk = (1e-6) * z^2*(E*F^2)/(R*T)*(Ci-co*exp(-z*(F*E)/(R*T)))/(1-exp(-z*(F*E)/(R*T)))
}
}
PROCEDURE rates (v (mV)) {
UNITSOFF
minf = 1/(1+exp(-(v - (-19)) / 5.5))
mtau = ((mtau_func(v)) * 1e3) / qt
UNITSON
}
FUNCTION mtau_func( v (mV) ) (ms) {
UNITSOFF
if (v > -50) {
mtau_func = .000191 + .00376*exp(-((v-(-41.9))/27.8)^2)
} else {
mtau_func = .00026367 + .1278 * exp(.10327*v)
}
UNITSON
}