TITLE slowly inactivating K current
: FORREST MD (2014) Two Compartment Model of the Cerebellar Purkinje Neuron
COMMENT
from "An Active Membrane Model of the Cerebellar Purkinje Cell
1. Simulation of Current Clamp in Slice"
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
NEURON {
SUFFIX kd
USEION k READ ek WRITE ik
RANGE gkbar, ik, gk, minf, hinf, mexp, hexp, h
}
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
PARAMETER {
v (mV)
celsius = 37 (degC)
dt (ms)
gkbar = .0045 (mho/cm2)
: ek = -85 (mV)
}
STATE {
m h
}
ASSIGNED {
ik (mA/cm2)
gk minf hinf mexp hexp
ek (mV)
}
BREAKPOINT {
SOLVE states
gk = gkbar * m*h
ik = gk* (v-ek)
}
UNITSOFF
INITIAL {
rates(v)
m = minf
h = hinf
}
PROCEDURE states() { :Computes state variables m, h
rates(v) : at the current v and dt.
m = m + mexp*(minf-m)
h = h + hexp*(hinf-h)
}
PROCEDURE rates(v) { :Computes rate and other constants at current v.
:Call once from HOC to initialize inf at resting v.
LOCAL q10, tinc, alpha, beta, sum
TABLE minf, mexp, hinf, hexp DEPEND dt, celsius FROM -100 TO 100 WITH 200
q10 = 3^((celsius - 37)/10)
tinc = -dt * q10
:"m" potassium activation system
alpha = 8.5/(1+exp((v+17)/(-12.5)))
beta = 35/(1+exp((v+99)/14.5))
sum = alpha + beta
minf = alpha/sum
mexp = 1 - exp(tinc*sum/10)
:"h" potassium inactivation system
alpha = 0.0015/(1+exp((v+89)/8))
beta = 0.0055/(1+exp((v+83)/(-8)))
sum = alpha + beta
hinf = alpha/sum
hexp = 1 - exp(tinc*sum*1.6)
}
UNITSON