# XPP scripts for supplementary Figure S4B right of # Maex R, Grinevich VP, Grinevich V, Budygin E, Bencherif M, Gutkin B (2014) # Understanding the role a7 nicotinic receptors play in dopamine efflux # in nucleus accumbens. ACS Chemical Neuroscience 5, 1032-1040. # # Activation model of Figure 3B; varying the efficacy of TC-7020. # Output is accumbal dopamine concentration in microM. # Naming conventions # # V_ = membrane voltage of (neuron or neuron population) # R_ = release of (transmitter) # C_ = concentration of (transmitter) # I_ = membrane current of (channel or receptor) # P_ = presynatic membrane current of (receptor) # tau_ = time-constant of # tmin_ = minimum value of time-constant of # tmax_ = maximum value of time-constant of # inf_ = steady-state value of # act_ = level of activation of (receptor) # des_ = level of desensitisation of (receptor) # w_ = weight of # EC50_ = halfmax concentration of steady-state response # Ktau_ = halfmax concentration of time-constant # stim_ = stimulation by # glu = glutamate or glu-ergic neuron (population) # dop = dopamine or dopamine-ergic neuron (population) # gab = gaba or gaba-ergic neuron (population) # ach = acetylcholine # nic = nicotine # a7 = alpha7-type nicACh receptor # a4b2 = alpha4-beta2-type nicACh receptor # bas = basal # # Units # time seconds # concentration microMolar (nanoMolar in printed figures) # Transfer functions (input-output) # sigmoid f(x) = 1/(1 + exp(-x)) # halfwave rectification hwr(x) = heav(x) * x # clipped at 0 and 1 clip(x) = (1 + (x-1) * (heav (1-x))) * heav(x) # Hill equation # Hill(x,K,n) = 1 / (1 + (K/x)^n) Hill(x,K,n) = x^n / (x^n + K^n) # competitive Hill ---THIS IS NEW and allows for competitive inhibition between up to three compounds --- compHill(x,y,z,wx,wy,wz,Kx,Ky,Kz,n) = \ (wx * x^n/(x^n + Kx^n * (1 + (y/Ky)^n + (z/Kz)^n))) + \ (wy * y^n/(y^n + Ky^n * (1 + (x/Kx)^n + (z/Kz)^n))) + \ (wz * z^n/(z^n + Kz^n * (1 + (x/Kx)^n + (y/Ky)^n))) # rectangular pulse rect_pulse(t,from,to,amp) = amp * (heav (t-from) - heav (t-to)) # THE MODEL (some of this code is based on Graupner & Gutkin) # We now have two neuron populations sharing inputs from # glu neurons (mostly a7-driven) and through a4b2 receptors. # The parameter coefficients r and s specify the balance # between these inputs. par s=0,r=0.7 # the dynamics of the dopaminergic neuron population V_dop V_dop' = (-V_dop - I_gab + hwr (I_basDop + s*I_glu + r*I_b2)) / tau_Vdop par tau_Vdop=0.02,I_basDop=0.1 aux aux_hwr=hwr (I_basDop + s*I_glu + r*I_b2) # the dynamics of the gaba-ergic neuron population V_gab V_gab' = (-V_gab + hwr ((1-s)*I_glu + (1-r)*I_b2)) / tau_Vgab par tau_Vgab=0.02 # the (stationary) glutamatergic input I_glu to dopamine (and GABA) neurons I_glu = w_glu * clip (V_glu + P_glu) par w_glu=1,V_glu=0.1 # the (varying) gaba-ergic input I_gab to dopamine neurons I_gab = w_gab * clip (V_gab + I_basGab) aux auxI_gab=I_gab par w_gab=1.5 par I_basGab=-0.05 aux auxI_gab=I_gab # the presynaptic facilitation of glu input to dopamine (and GABA) neurons P_glu = P_a7 # the dynamics of presynaptic a7 receptors (same single variable for # glu inputs to dopamine cells in VTA and medium spiny neurons in striatum) P_a7 = act_a7 * (1 - des_a7) aux auxP_a7=P_a7 aux auxact_a7=act_a7 aux auxsen_a7=1-des_a7 # /* activation of alpha7 */ act_a7' = (- act_a7 + inf_actA7) / tau_actA7 inf_actA7 = compHill(C_ach, C_nic, C_agA7, \ 1, w_actNicA7, w_actAgA7, \ EC50_A7ach, EC50_A7nic, EC50_A7ag, Hill_actA7) par EC50_A7=80 par EC50_A7ach=68 par EC50_A7nic=13 par Hill_actA7=1.73 par EC50_A7ag=0.03 par w_actNicA7=0.8 par tau_actA7=0.005 # THIS IS THE PARAMETER VARIED IN THE FIGURE # par w_actAgA7=0.1 par w_actAgA7=0.3 # par w_actAgA7=1.0 # /* desensitisation of alpha7 */ des_a7' = (- des_a7 + inf_desA7) / tau_desA7 inf_desA7 = compHill( 0, C_nic, C_agA7, \ 1, 1, 1, \ 1, IC50_A7nic, IC50_A7ag, Hill_desA7) par IC50_A7nic=1.3 par Hill_desA7=2 par IC50_A7ag=0.002 tau_desA7 = tmin_desA7 + \ tmax_desA7 * (1 - inf_desA7) aux aux_tdA7=tau_desA7 par tmin_desA7=0.05 par tmax_desA7=120 # the dynamics of somatic a4b2 receptors on the soma/dendrite of dopamine neurons I_b2 = act_b2 * (1 - des_b2) aux auxI_b2=I_b2 aux auxact_b2=act_b2 aux auxsen_b2=1-des_b2 # /* activation of alpha4beta2 */ act_b2' = (- act_b2 + inf_actB2) / tau_actB2 inf_actB2 = compHill(C_ach, C_nic, C_agB2, \ 1, w_actNicB2, w_actAgB2, \ EC50_B2ach, EC50_B2nic, EC50_B2ag, Hill_actB2) par EC50_actB2=30 par EC50_B2ach=30 par EC50_B2ag=30 par EC50_B2nic=0.23 par Hill_actB2=1.05 par w_actNicB2=2 par w_actAgB2=1 par tau_actB2=0.005 # /* desensitisation */ des_b2' = (- des_b2 + inf_desB2) / tau_desB2 inf_desB2 = Hill (C_nic + C_agB2, EC50_desB2, Hill_desB2) tau_desB2 = tmin_desB2 + \ tmax_desB2 * Hill (Ktau_desB2, C_nic + C_agB2, Htau_desB2) aux aux_tdB2=tau_desB2 par EC50_desB2=0.061 par Hill_desB2=0.5 par tmin_desB2=0.5 par tmax_desB2=600 par Ktau_desB2=0.11 par Htau_desB2=3 # the dynamics of dopamine release AND RE-UPTAKE # This is a bit complicated because for a fair comparison, all dopamine levels # are normalized to the same fixed baseline (about 50 nanoMolar). Hence we assume # that homeostatic mechanisms are at work that keep the baseline fixed under variable # parameter conditions (mostly varying cholinergic tones). R_dop' = (C_basDop * (1 + (V_dop-ss_Vdop) / ss_Vdop) - R_dop) / tau_Rdop - R_dop * Vmax_Rdop / (R_dop + EC50_Rdop) par tau_Rdop=0.2,P_a7bas=0.01 par C_basDop=0.1 # the following values are from Chen and Budygin 2007 par Vmax_Rdop=1.3 par EC50_Rdop=0.2 # the physiological (ach) and pharmacological (nic, specific a7 and a4b2 agonists) stimuli # /* acetylcoline */ par C_ach=0 # /* nicotine */ stim_nic = bas_nic + rect_pulse (t, 66, 67, dose_Nic) par dose_nic=1 # we now simulate an alpha function as a second-order ode # the alpha-function is area normalized # to calculate its peak, take amplitude and divide by 10*e C_nic_nic' = (-C_nic_nic + stim_nic)/tau1_nic C_nic' = (-C_nic + C_nic_nic)/tau2_nic par tau1_nic=10,tau2_nic=10,bas_nic=0 # /* alpha7 agonist */ stim_a7 = rect_pulse (t, 36, 37, dose_Aga7) par dose_Aga7=0.5 C_agA7A7' = (-C_agA7A7 + stim_a7) / tau1_agA7 C_agA7' = (-C_agA7 + C_agA7A7) / tau2_agA7 par tau1_agA7=10,tau2_agA7=100 # /* alpha4 beta2 agonist */ stim_b2 = rect_pulse (t, 60, 61, 0) C_agB2' = (-C_agB2 + stim_b2) / tau_agB2 par tau_agB2=10 # /* calculating the steady-states (in reverse order) */ ss_Ib2 = compHill( C_ach, 0, 0, \ 1, w_actNicB2, w_actAgB2, \ EC50_B2ach, EC50_B2nic, EC50_B2ag, Hill_actB2) ss_Pa7 = compHill( C_ach, 0, 0, \ 1, w_actNicA7, w_actAgA7, \ EC50_A7ach, EC50_A7nic, EC50_A7ag, Hill_actA7) ss_Pglu = ss_Pa7 ss_Iglu = w_glu * clip (V_glu + ss_Pglu) ss_Vgab = hwr ((1-s)*ss_Iglu + (1-r)*ss_Ib2) ss_Igab = w_gab * clip (ss_Vgab + I_basGab) ss_Vdop = - ss_Igab + hwr (I_basDop + s*ss_Iglu + r*ss_Ib2) # aux auxss_Vdop=ss_Vdop # the initial conditions act_a7(0)=0 des_a7(0)=0 act_b2(0)=0 des_b2(0)=0 V_dop(0)=0 V_gab(0)=0 C_nic(0)=bas_nic C_nic_nic(0)=bas_nic # the numerical parameters @ MAXSTOR=500000 @ BOUNDS=1e+8 @ DT=0.005 @ TOTAL=150 @ xlo=20 @ xhi=120 @ ylo=0 @ yhi=0.12 @ METHOD=rk @ NJMP=20 @ YP=r_dop done