TITLE KATP channel
: Author: Chitaranjan Mahapatra (chitaranjan@iitb.ac.in)
: Computational Neurophysiology Lab
: Indian Institute of Technology Bombay, India
: For details refer:
: Mahapatra C, Brain KL, Manchanda R, A biophysically constrained computational model of the action potential
: of mouse urinary bladder smooth muscle. PLOS One (2018)
NEURON {
SUFFIX KATP
USEION atp READ atpi VALENCE -1
USEION k READ ek WRITE ik
RANGE gbar, ik, tauo,oinf
GLOBAL qdeltat,at,athf,ap, q10
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
}
PARAMETER {
qdeltat = 1
gbar = 0.001(mho/cm2)
atpi = 0.0003 (mM)
athf = 0.006 (mM)
ek = -21 (mV)
at = 10
ap =3
celsius = 37 (degC)
dt (ms)
q10=2.3
}
ASSIGNED {
v (mV)
ik (mA/cm2)
oinf
tauo (ms)
}
STATE{
o
}
INITIAL{
rate(atpi)
o = oinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = gbar * o * (v - ek)
}
DERIVATIVE states {
rate(atpi)
o' = (o-oinf ) / tauo
}
PROCEDURE rate(atpi(mM)) {
LOCAL a,qt
qt=q10^((celsius-37)/10)
oinf = (1/ (1+ ((atpi/athf)^ap)))
if (atpi < 0.005) {
tauo = 1 - (186.67 * atpi)/qt
} else {
tauo = 2/qt
}
tauo = at * (tauo / qdeltat)
}
FUNCTION trap0(v,th,a,q) {
if (fabs(v-th) > 1e-6) {
trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
} else {
trap0 = a * q
}
}