TITLE K-A
: K-A current for Mitral Cells from Wang et al (1996)
: M.Migliore Jan. 2002
NEURON {
SUFFIX Ikt1m4h
USEION k READ ek WRITE ik
RANGE gbar, ik
GLOBAL minf, mtau, hinf, htau
}
PARAMETER {
gbar = 0.002 (mho/cm2)
celsius
ek (mV) : must be explicitly def. in hoc
v (mV)
a0m=0.04
vhalfm=-31.5
zetam=0.17
gmm=0.35
a0h=0.018
vhalfh=-16
zetah=0.6
gmh=0.8
sha=9.9
shi=5.7
q10=3
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
ASSIGNED {
ik (mA/cm2)
minf mtau (ms)
hinf htau (ms)
}
STATE { m h}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = gbar*m*m*m*m*h*(v + 98)
}
INITIAL {
trates(v)
m=minf
h=hinf
}
DERIVATIVE states {
trates(v)
m' = (minf-m)/mtau
h' = (hinf-h)/htau
}
PROCEDURE trates(v) {
LOCAL qt
qt=q10^((celsius-24)/10)
minf = 1/(1+exp(-(v+39.1)/18.56))
mtau=betm(v)/(0.54*(3+alpm(v)))+0.23
hinf = 1/(1+exp((v+39.57)/3.68))
htau = beth(v)/(0.2*(0.000001+alph(v)))+5
}
FUNCTION alpm(v(mV)) {
alpm = exp(zetam*(v-vhalfm))
}
FUNCTION betm(v(mV)) {
betm = exp(zetam*gmm*(v-vhalfm))
}
FUNCTION alph(v(mV)) {
alph = exp(zetah*(v-vhalfh))
}
FUNCTION beth(v(mV)) {
beth = exp(zetah*gmh*(v-vhalfh))
}