clc
clear all
close all
% *************************************************************************
% This script reproduces Figure 3D of the manuscript.
% Florian Raudies, 01/30/2014, Boston University.
% This script will run for about 40 minutes.
% *************************************************************************
LABEL_SIZE = 16;
NHidden = 10:10:80;
nNHidden = length(NHidden);
nLayer = 3;
nRun = 50;
nBlock = 200;
Err = zeros(nRun,nNHidden);
LetterLabel = {'A','B','C','D'};
NumberLabel = {'1','2','3','4'};
tic
for iRun = 1:nRun,
% Set seed for random number generator to be able to replicate data.
rng(1+iRun);
fprintf('Working on run %d of %d.\n',iRun,nRun);
for iHidden = 1:nNHidden,
fprintf('Working on hidden number %d of %d.\n',iHidden,nNHidden);
nHidden = NHidden(iHidden);
dcl = DoubleContextLearnerDBN(LetterLabel,NumberLabel,NHidden(iHidden),nLayer);
dcl.learn(nBlock,{'A1','B1'});
Err(iRun,iHidden) = dcl.testError;
end
end
toc
nSample = size(Err,1);
sErr = 1/sqrt(nSample);
id = dcl.getIdentifier();
figure('Position',[50 50 600 500],'PaperPosition',[2 2 5 4],'Name','D');
bar(NHidden,mean(Err,1),'FaceColor',[0.7 0.7 0.7]); hold on;
errorbar(NHidden,mean(Err,1),sErr*std(Err,0,1),'k.',...
'LineWidth',1.5); hold off;
xlabel('Number of hidden neurons','FontSize',LABEL_SIZE);
ylabel('Error probability','FontSize',LABEL_SIZE);
title(id,'FontSize',LABEL_SIZE);
set(gca,'FontSize',LABEL_SIZE);
axis([0 90 0 0.5]); axis square;