% A mathematical model for a bursting neuron with Nav1.6-type Na+ currents
% The model reproduces bursting activity in brainstem proprioceptive
% Mesencephalic V neurons.
% Author: Sharmila Venugopal, Ph.D.
% Date: 10/02/2018
% Email: vsharmila@g.ucla.edu
% Department of Integrative Biology & Physiology, UCLA
% If you benefit from this model/code, please cite us.
%%
clc;
clear all;
% % Initial values for membrane potential and channel gating variables
V=-60; % Initial membrane voltage
hp=0.3; % Initial inactivation gate for persistent sodium
n=1/(1+exp(-(V-(-43))/3.9)); % Initial activation gate for fast sodium
h=(1/(1+exp((V+55)/7.1))); % Initial inactivation gate for fast sodium
br=0.9; % Initial activation gate for resurgent sodium
hr=0; % Initial inactivation gate for resurgent sodium
y0=[V; hp; n; h; br; hr];
% Simulation time
tmax=5000;
tstep=0.01;
tspan=0:tstep:tmax;
[time,sol]=ode45(@BurstingNeuron,tspan,y0); % Solve using ode45
hp=sol(:,2);
h=sol(:,4);
br=sol(:,5);
hr=sol(:,6);
V = sol(:,1);
%%%
figure
plot(time,V,'k');
xlabel('Time (ms)');
ylabel('Membrane Voltage, V (mV)');
set(gcf, 'Position', [100, 100, 600, 500]);
%%
% BurstingNeuron(t,y): This function models a bursting neuron with a novel
% formulation for resurgent sodium current.
% Burst patterns resemble observed in vitro bursting in Mesencephalic V
% neurons.
function dydt = BurstingNeuron(t,y)
% Setting input array to corresponding model variables
V=y(1);
hp=y(2);
n=y(3);
h=y(4);
br=y(5);
hr=y(6);
% Membrane Constants
C=1; % Membrane capacitance
% Leak current parameters (Ileak)
Eleak=-62; % Leak reversal potential
gleak=2; % Leak conductance
% Slower potassium current parameters (IK)
EK=-80; % Potassium reversal potential
tauV=4;
KV12=-43;
Kk=3.9;
gK=7; % K+ conductance
% Parameters of Sodium currents
NaV12=-50;
Nak=6.4;
tauphVbs=100;
tauphVst=10000;
tauh=2;
Ah=3; % Default value provided. Values ranged from 1 to 3 for various simulations presented to fit experimental data
Ak=9; % Default value provided. Values ranged from 9 to 11 for various simulations presented to fit experimental data
Bh=2.5; % Default value provided. Values ranged from 1 to 2.5 for various simulations presented to fit experimental data
Ab=0.05; % Default value provided. Values ranged from 0.05 to 0.1 for various simulations presented to fit experimental data
kb=0.3; % Default value provided. Values ranged from 0.3 to 1 for various simulations presented to fit experimental data
%
% % Maximal conductances
gNat=22; % Transient Na+ conductance
gNar=5; % Resurgent Na+ conductance. Values ranged from 3 to 12 nS to reproduce dynamic-clamp data
gNap=0.45; % Persistent Na+ conductance Values ranged from 0.45 to 0.9 nS to reproduce dynamic-clamp data
ENa=55; % Sodium reversal potential
% Injected current
Iapp = 4;
% Voltage-dependent channel gating functions
function mt = mtinf(arg1)
mt = 1/(1+exp(-(arg1+35)/4.3));
end
function h = hinf(arg1)
h = 1/(1+exp((arg1+55)/7.1));
end
function mp = mpinf(arg1)
mp = 1/(1+exp(-(arg1-NaV12)/Nak));
end
function hp = hpinf(arg1)
hp = 1/(1+exp((arg1+52)/14));
end
function hhr = hrinf(arg1)
hhr = 1/(1+exp((arg1+40)/20));
end
function alphah = alphahr(arg1)
alphah = (Ah*(1/(1+exp(-(arg1+45)/Ak))));
end
function betah = betahr(arg1)
betah = (0.5*(1/(1+exp(-(arg1+40)/15))));
end
function bbr = brinf(arg1)
bbr = 1/(1+exp((arg1+40)/12));
end
function beta = betabr(arg1)
beta = (2*(1/(1+exp(-(arg1-40)/8))));
end
function nn = ninf(arg1)
nn = 1/(1+exp(-(arg1-KV12)/Kk));
end
function taup = tauphV(arg1)
taup = (tauphVbs+tauphVst/(1+exp((arg1+60)/10)));
end
ivK = gK*n*(V-EK); % TEA sensitive Kv1.2 type K+ current
ivL = gleak*(V-Eleak); % Leak current
ivNa = ((gNap*mpinf(V)*hp) + (gNat*mtinf(V)*h) + (gNar*(1-br)^3*hr^5))*(V-ENa); % Nav1.6 type Na+ current with transient, resurgent and persistent components
% Membrane potential differential equation
dydt = [((Iapp)-ivL-(ivNa)-(ivK))/C; (hpinf(V)-hp)/tauphV(V); (ninf(V)-n)/tauV; (hinf(V)-h)/tauh; (Ab*(1-br)*brinf(V))-kb*(betabr(V)*br); (alphahr(V)*hrinf(V))-Bh*betahr(V)*hr];
end