/* Created by Language version: 6.2.0 */
/* VECTORIZED */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gnabar _p[0]
#define gkbar _p[1]
#define gl _p[2]
#define el _p[3]
#define q10m _p[4]
#define q10n _p[5]
#define q10h _p[6]
#define gna _p[7]
#define gk _p[8]
#define il _p[9]
#define m _p[10]
#define h _p[11]
#define n _p[12]
#define Dm _p[13]
#define Dh _p[14]
#define Dn _p[15]
#define ena _p[16]
#define ek _p[17]
#define ina _p[18]
#define ik _p[19]
#define v _p[20]
#define _g _p[21]
#define _ion_ena *_ppvar[0]._pval
#define _ion_ina *_ppvar[1]._pval
#define _ion_dinadv *_ppvar[2]._pval
#define _ion_ek *_ppvar[3]._pval
#define _ion_ik *_ppvar[4]._pval
#define _ion_dikdv *_ppvar[5]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_rates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_hhaxon", _hoc_setdata,
"rates_hhaxon", _hoc_rates,
0, 0
};
static void _check_rates(double*, Datum*, Datum*, _NrnThread*);
static void _check_table_thread(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, int _type) {
_check_rates(_p, _ppvar, _thread, _nt);
}
/* declare global and static user variables */
static int _thread1data_inuse = 0;
static double _thread1data[6];
#define _gth 0
#define htau_hhaxon _thread1data[0]
#define htau _thread[_gth]._pval[0]
#define hinf_hhaxon _thread1data[1]
#define hinf _thread[_gth]._pval[1]
#define mtau_hhaxon _thread1data[2]
#define mtau _thread[_gth]._pval[2]
#define minf_hhaxon _thread1data[3]
#define minf _thread[_gth]._pval[3]
#define ntau_hhaxon _thread1data[4]
#define ntau _thread[_gth]._pval[4]
#define ninf_hhaxon _thread1data[5]
#define ninf _thread[_gth]._pval[5]
#define usetable usetable_hhaxon
double usetable = 1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"gl_hhaxon", 0, 1e+009,
"gkbar_hhaxon", 0, 1e+009,
"gnabar_hhaxon", 0, 1e+009,
"usetable_hhaxon", 0, 1,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"mtau_hhaxon", "ms",
"htau_hhaxon", "ms",
"ntau_hhaxon", "ms",
"gnabar_hhaxon", "S/cm2",
"gkbar_hhaxon", "S/cm2",
"gl_hhaxon", "S/cm2",
"el_hhaxon", "mV",
"gna_hhaxon", "S/cm2",
"gk_hhaxon", "S/cm2",
"il_hhaxon", "mA/cm2",
0,0
};
static double delta_t = 0.01;
static double h0 = 0;
static double m0 = 0;
static double n0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"minf_hhaxon", &minf_hhaxon,
"hinf_hhaxon", &hinf_hhaxon,
"ninf_hhaxon", &ninf_hhaxon,
"mtau_hhaxon", &mtau_hhaxon,
"htau_hhaxon", &htau_hhaxon,
"ntau_hhaxon", &ntau_hhaxon,
"usetable_hhaxon", &usetable_hhaxon,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[6]._i
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"6.2.0",
"hhaxon",
"gnabar_hhaxon",
"gkbar_hhaxon",
"gl_hhaxon",
"el_hhaxon",
"q10m_hhaxon",
"q10n_hhaxon",
"q10h_hhaxon",
0,
"gna_hhaxon",
"gk_hhaxon",
"il_hhaxon",
0,
"m_hhaxon",
"h_hhaxon",
"n_hhaxon",
0,
0};
static Symbol* _na_sym;
static Symbol* _k_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 22, _prop);
/*initialize range parameters*/
gnabar = 0.48;
gkbar = 1.088;
gl = 0.0016;
el = -60;
q10m = 1;
q10n = 1;
q10h = 1;
_prop->param = _p;
_prop->param_size = 22;
_ppvar = nrn_prop_datum_alloc(_mechtype, 7, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_na_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ena */
_ppvar[1]._pval = &prop_ion->param[3]; /* ina */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dinadv */
prop_ion = need_memb(_k_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[3]._pval = &prop_ion->param[0]; /* ek */
_ppvar[4]._pval = &prop_ion->param[3]; /* ik */
_ppvar[5]._pval = &prop_ion->param[4]; /* _ion_dikdv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _thread_mem_init(Datum*);
static void _thread_cleanup(Datum*);
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*f)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _hhaxon_reg() {
int _vectorized = 1;
_initlists();
ion_reg("na", -10000.);
ion_reg("k", -10000.);
_na_sym = hoc_lookup("na_ion");
_k_sym = hoc_lookup("k_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 2);
_extcall_thread = (Datum*)ecalloc(1, sizeof(Datum));
_thread_mem_init(_extcall_thread);
_thread1data_inuse = 0;
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 1, _thread_mem_init);
_nrn_thread_reg(_mechtype, 0, _thread_cleanup);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
_nrn_thread_table_reg(_mechtype, _check_table_thread);
hoc_register_prop_size(_mechtype, 22, 7);
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 hhaxon y:/Maggie/Modeling/NEURON 7.4 x86_64/Axon_temp/2018-08-16/mod files/hhaxon.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double *_t_minf;
static double *_t_mtau;
static double *_t_hinf;
static double *_t_htau;
static double *_t_ninf;
static double *_t_ntau;
static int _reset;
static char *modelname = "hhaxon.mod squid sodium, potassium, and leak channels";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _f_rates(_threadargsprotocomma_ double);
static int rates(_threadargsprotocomma_ double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static void _n_rates(_threadargsprotocomma_ double _lv);
static int _slist1[3], _dlist1[3];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
rates ( _threadargscomma_ v ) ;
Dm = ( minf - m ) / mtau ;
Dh = ( hinf - h ) / htau ;
Dn = ( ninf - n ) / ntau ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
rates ( _threadargscomma_ v ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / mtau )) ;
Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / htau )) ;
Dn = Dn / (1. - dt*( ( ( ( - 1.0 ) ) ) / ntau )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
rates ( _threadargscomma_ v ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / mtau)))*(- ( ( ( minf ) ) / mtau ) / ( ( ( ( - 1.0) ) ) / mtau ) - m) ;
h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / htau)))*(- ( ( ( hinf ) ) / htau ) / ( ( ( ( - 1.0) ) ) / htau ) - h) ;
n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / ntau)))*(- ( ( ( ninf ) ) / ntau ) / ( ( ( ( - 1.0) ) ) / ntau ) - n) ;
}
return 0;
}
static double _mfac_rates, _tmin_rates;
static void _check_rates(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
static int _maktable=1; int _i, _j, _ix = 0;
double _xi, _tmax;
static double _sav_q10m;
static double _sav_q10n;
static double _sav_q10h;
if (!usetable) {return;}
if (_sav_q10m != q10m) { _maktable = 1;}
if (_sav_q10n != q10n) { _maktable = 1;}
if (_sav_q10h != q10h) { _maktable = 1;}
if (_maktable) { double _x, _dx; _maktable=0;
_tmin_rates = - 100.0 ;
_tmax = 100.0 ;
_dx = (_tmax - _tmin_rates)/200.; _mfac_rates = 1./_dx;
for (_i=0, _x=_tmin_rates; _i < 201; _x += _dx, _i++) {
_f_rates(_p, _ppvar, _thread, _nt, _x);
_t_minf[_i] = minf;
_t_mtau[_i] = mtau;
_t_hinf[_i] = hinf;
_t_htau[_i] = htau;
_t_ninf[_i] = ninf;
_t_ntau[_i] = ntau;
}
_sav_q10m = q10m;
_sav_q10n = q10n;
_sav_q10h = q10h;
}
}
static int rates(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv) {
#if 0
_check_rates(_p, _ppvar, _thread, _nt);
#endif
_n_rates(_p, _ppvar, _thread, _nt, _lv);
return 0;
}
static void _n_rates(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv){ int _i, _j;
double _xi, _theta;
if (!usetable) {
_f_rates(_p, _ppvar, _thread, _nt, _lv); return;
}
_xi = _mfac_rates * (_lv - _tmin_rates);
if (isnan(_xi)) {
minf = _xi;
mtau = _xi;
hinf = _xi;
htau = _xi;
ninf = _xi;
ntau = _xi;
return;
}
if (_xi <= 0.) {
minf = _t_minf[0];
mtau = _t_mtau[0];
hinf = _t_hinf[0];
htau = _t_htau[0];
ninf = _t_ninf[0];
ntau = _t_ntau[0];
return; }
if (_xi >= 200.) {
minf = _t_minf[200];
mtau = _t_mtau[200];
hinf = _t_hinf[200];
htau = _t_htau[200];
ninf = _t_ninf[200];
ntau = _t_ntau[200];
return; }
_i = (int) _xi;
_theta = _xi - (double)_i;
minf = _t_minf[_i] + _theta*(_t_minf[_i+1] - _t_minf[_i]);
mtau = _t_mtau[_i] + _theta*(_t_mtau[_i+1] - _t_mtau[_i]);
hinf = _t_hinf[_i] + _theta*(_t_hinf[_i+1] - _t_hinf[_i]);
htau = _t_htau[_i] + _theta*(_t_htau[_i+1] - _t_htau[_i]);
ninf = _t_ninf[_i] + _theta*(_t_ninf[_i+1] - _t_ninf[_i]);
ntau = _t_ntau[_i] + _theta*(_t_ntau[_i+1] - _t_ntau[_i]);
}
static int _f_rates ( _threadargsprotocomma_ double _lv ) {
double _lq10 ;
minf = 1.0 / ( 1.0 + exp ( - 0.4 * ( 36.0 + _lv ) ) ) ;
mtau = ( 1.0 / q10m ) * ( 2.0 * exp ( - 0.05 * ( _lv + 40.0 ) ) ) ;
htau = ( 1.0 / q10h ) * ( 40.0 * exp ( - 0.025 * ( _lv + 55.0 ) ) ) ;
hinf = 1.0 / ( 1.0 + exp ( 39.5 + _lv ) ) ;
ninf = 1.0 / ( 1.0 + exp ( 0.125 * ( - 33.0 - _lv ) ) ) ;
ntau = ( 1.0 / q10n ) * ( 55.0 * exp ( - 0.015 * ( _lv + 28.0 ) ) ) ;
return 0; }
static void _hoc_rates(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
#if 1
_check_rates(_p, _ppvar, _thread, _nt);
#endif
_r = 1.;
rates ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 3;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ena = _ion_ena;
ek = _ion_ek;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 3; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ena = _ion_ena;
ek = _ion_ek;
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}}
static void _thread_mem_init(Datum* _thread) {
if (_thread1data_inuse) {_thread[_gth]._pval = (double*)ecalloc(6, sizeof(double));
}else{
_thread[_gth]._pval = _thread1data; _thread1data_inuse = 1;
}
}
static void _thread_cleanup(Datum* _thread) {
if (_thread[_gth]._pval == _thread1data) {
_thread1data_inuse = 0;
}else{
free((void*)_thread[_gth]._pval);
}
}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_na_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_na_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_na_sym, _ppvar, 2, 4);
nrn_update_ion_pointer(_k_sym, _ppvar, 3, 0);
nrn_update_ion_pointer(_k_sym, _ppvar, 4, 3);
nrn_update_ion_pointer(_k_sym, _ppvar, 5, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
h = h0;
m = m0;
n = n0;
{
rates ( _threadargscomma_ v ) ;
m = minf ;
h = hinf ;
n = ninf ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if 0
_check_rates(_p, _ppvar, _thread, _nt);
#endif
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ena = _ion_ena;
ek = _ion_ek;
initmodel(_p, _ppvar, _thread, _nt);
}}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
gna = gnabar * m * m * m * h ;
ina = gna * ( v - ena ) ;
gk = gkbar * n * n * n * n ;
ik = gk * ( v - ek ) ;
il = gl * ( v - el ) ;
}
_current += ina;
_current += ik;
_current += il;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ena = _ion_ena;
ek = _ion_ek;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dik;
double _dina;
_dina = ina;
_dik = ik;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dinadv += (_dina - ina)/.001 ;
_ion_dikdv += (_dik - ik)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ina += ina ;
_ion_ik += ik ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double _break, _save;
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_break = t + .5*dt; _save = t;
v=_v;
{
ena = _ion_ena;
ek = _ion_ek;
{ {
for (; t < _break; t += dt) {
states(_p, _ppvar, _thread, _nt);
}}
t = _save;
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_slist1[1] = &(h) - _p; _dlist1[1] = &(Dh) - _p;
_slist1[2] = &(n) - _p; _dlist1[2] = &(Dn) - _p;
_t_minf = makevector(201*sizeof(double));
_t_mtau = makevector(201*sizeof(double));
_t_hinf = makevector(201*sizeof(double));
_t_htau = makevector(201*sizeof(double));
_t_ninf = makevector(201*sizeof(double));
_t_ntau = makevector(201*sizeof(double));
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif