TITLE n-calcium channel
: n-type calcium channel
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
FARADAY = 96520 (coul)
R = 8.3134 (joule/degC)
KTOMV = .0853 (mV/degC)
}
PARAMETER {
curr
v (mV)
sh=0 (mV)
celsius (degC)
gcanbar=.0003 (mho/cm2)
ki=.001 (mM)
cai=50.e-6 (mM)
cao = 2 (mM)
q10=5
mmin = 0.2
hmin = 3
a0m =0.03
zetam = 2
vhalfm = -14
gmm=0.1
time1=600
time0=100
alphash0=0
alphash1=0.15
sh2
count=1
vrun (mV)
delta=0
vinit=-76.2
:vvrun=0
timestep=1000
vrun2
v0
dv0
ddv
flag=0
FCa = 2
PCa = 1
BCa = 2
CCa = 50
stim_moltCa=1
eca2=140
}
NEURON {
SUFFIX can
POINTER stim_i
USEION ca READ cai,cao WRITE ica
RANGE flag, curr, gcanbar, ica, gcan,sh , count,delta2,vrun2, stim_moltCa , eca2, vvrun
GLOBAL hinf,minf,taum,tauh
}
STATE {
m h
}
ASSIGNED {
ica (mA/cm2)
gcan (mho/cm2)
minf
hinf
taum
tauh
stim_i
vvrun
}
INITIAL {
rates(v,sh2)
m = minf
h = hinf
vrun=0
vvrun=vrun
}
BREAKPOINT {
SOLVE states METHOD cnexp
gcan = gcanbar*m*m*h*h2(cai)
ica = gcan*ghk(v,cai,cao)
}
UNITSOFF
FUNCTION h2(cai(mM)) {
h2 = ki/(ki+cai)
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
LOCAL nu,f
f = KTF(celsius)/2
nu = v/f
ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (degC)) (mV) {
KTF = ((25./293.15)*(celsius + 273.15))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
FUNCTION alph(v(mV)) {
alph = 1.6e-4*exp(-v/48.4)
}
FUNCTION beth(v(mV)) {
beth = 1/(exp((-v+39.0)/10.)+1.)
}
FUNCTION alpm(v(mV)) {
alpm = 0.1967*(-1.0*v+19.88)/(exp((-1.0*v+19.88)/10.0)-1.0)
}
FUNCTION betm(v(mV)) {
betm = 0.046*exp(-v/20.73)
}
FUNCTION alpmt(v(mV)) {
alpmt = exp(0.0378*zetam*(v-vhalfm))
}
FUNCTION betmt(v(mV)) {
betmt = exp(0.0378*zetam*gmm*(v-vhalfm))
}
UNITSON
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v,sh2)
m' = (minf - m)/taum
h' = (hinf - h)/tauh
}
BEFORE STEP { LOCAL i
if(stim_i==0 && flag==0){
vrun=0
vvrun=0
}else{
flag=1
delta=v-vinit
if (count<timestep+1){
vrun= (delta-vrun)*(FCa/(count+1))+vrun
vrun2=vrun
}else{
vrun2= (delta)*(FCa/(timestep+1))+vrun2*pow((1-FCa/(timestep+1)),PCa)
}
vvrun=(BCa*vrun2/(1+vrun2/CCa))
count=count+1
}
sh2=sh+alphash1*vvrun
}
PROCEDURE rates(v (mV),sh2) { :callable from hoc
LOCAL a, b, qt,i
a = alpm(v-sh2)
b = 1/(a + betm(v-sh2))
minf = a*b
taum = betmt(v-sh2)/(qt*a0m*(1+alpmt(v-sh2)))
if (taum<mmin/qt) {taum=mmin/qt}
a = alph(v-sh2)
b = 1/(a + beth(v-sh2))
hinf = a*b
tauh=b/qt
:tauh= 80
if (tauh<hmin) {tauh=hmin}
}