TITLE Ca R-type channel with medium threshold for activation
: used in distal dendritic regions, together with calH.mod, to help
: the generation of Ca++ spikes in these regions
: uses channel conductance (not permeability)
: written by Yiota Poirazi on 11/13/00 poirazi@LNC.usc.edu
:
: updated to use CVode by Carl Gold 08/10/03
: Updated by Maria Markaki 03/12/03
NEURON {
SUFFIX car
POINTER stim_i
USEION ca READ cai, cao WRITE ica
: USEION Ca WRITE iCa VALENCE 2
RANGE flag, curr, gcabar, m, h,ica,sh,count,delta2,vrun2,stim_moltCa
RANGE curr, inf, fac, tau
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
ASSIGNED { : parameters needed to solve DE
ica (mA/cm2)
: iCa (mA/cm2)
inf[2]
tau[2] (ms)
v (mV)
celsius (degC)
cai (mM) : initial internal Ca++ concentration
cao (mM) : initial external Ca++ concentration
stim_i
}
PARAMETER {
curr : parameters that can be entered when function is called in cell-setup
gcabar = 0 (mho/cm2) : initialized conductance
eca = 140 (mV) : Ca++ reversal potential
eca2=140 (mV) : Ca++ reversal potential
sh=0 (mV)
time1=600
time0=100
alpha=1
alphash1=0.15
sh2
count=1
vrun (mV)
delta=0
vinit=-76.2
vvrun=0
timestep=1000
vrun2
v0
dv0
ddv
flag=0
FCa = 2
PCa = 1
BCa = 2
CCa = 50
stim_moltCa=1
}
STATE {
m
h
} : unknown activation and inactivation parameters to be solved in the DEs
INITIAL {
rates(v,sh2)
m = 0 : initial activation parameter value
h = 1 : initial inactivation parameter value
vrun=0
vvrun=vrun
}
BREAKPOINT {
SOLVE states METHOD cnexp
:ecar = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai)
eca2=eca+vvrun*alpha
ica = gcabar*m*m*m*h*(v - eca)
}
DERIVATIVE states {
rates(v,sh2)
m' = (inf[0]-m)/tau[0]
h' = (inf[1]-h)/tau[1]
}
BEFORE STEP { LOCAL i
if(stim_i==0 && flag==0){
vrun=0
vvrun=0
}else{
flag=1
delta=v-vinit
if (count<timestep+1){
vrun= (delta-vrun)*(FCa/(count+1))+vrun
vrun2=vrun
}else{
vrun2= (delta)*(FCa/(timestep+1))+vrun2*pow((1-FCa/(timestep+1)),PCa)
}
vvrun=(BCa*vrun2/(1+vrun2/CCa))
count=count+1
}
sh2=sh+alphash1*vvrun
}
PROCEDURE rates(v(mV),sh2) {LOCAL a, b ,i
FROM i=0 TO 1 {
tau[i] = vartau(v,i)
inf[i] = varss(v-sh2,i)
}
}
FUNCTION varss(v(mV), i) {
if (i==0) {
varss = 1 / (1 + exp((v+48.5)/(-3(mV)))) : Ca activation
}
else if (i==1) {
varss = 1/ (1 + exp((v+53)/(1(mV)))) : Ca inactivation
}
}
FUNCTION vartau(v(mV), i) (ms){
if (i==0) {
vartau = 50(ms) : activation variable time constant
: vartau = 120(ms) : activation variable time constant
}
else if (i==1) {
vartau = 5(ms) : inactivation variable time constant
: vartau = 4(ms) : inactivation variable time constant
}
}