TITLE K-A channel from Klee Ficker and Heinemann
: modified to account for Dax A Current --- M.Migliore Jun 1997
: modified to be used with cvode M.Migliore 2001
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
curr
v (mV)
celsius (degC)
gkabar=.008 (mho/cm2)
vhalfn=11 (mV)
vhalfl=-56 (mV)
a0l=0.05 (/ms)
a0n=0.05 (/ms)
zetan=-1.5 (1)
zetal=3 (1)
gmn=0.55 (1)
gml=1 (1)
lmin=2 (mS)
nmin=0.1 (mS)
pw=-1 (1)
tq=-40
qq=5
q10=5
qtl=1
ek
ek2=-80 (mV)
sh=0 (mV)
count=1
vrun (mV)
delta=0
vinit=-76.2
alpha=1.06
sh2
alphash0=0
alphash1=0.15
vvrun=0
timestep=1000
vrun2
v0
dv0
ddv
flag=0
FK = 2
PK = 1
BK = 2.11
CK = 48
stim_moltK=1
}
NEURON {
SUFFIX kap
POINTER stim_i
USEION k READ ek WRITE ik
RANGE flag, curr, gkabar,gka, sh ,ek2,vrun,count,vvrun,vrun2,delta2, stim_moltK
GLOBAL ninf,linf,taul,taun,lmin,alpha
}
STATE {
n
l
}
ASSIGNED {
ik (mA/cm2)
ninf
linf
taul
taun
gka
stim_i
}
INITIAL {
vrun=0
vvrun=vrun
rates(v,sh2)
n=ninf
l=linf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gka = gkabar*n*l
ek2=ek+vvrun*alpha
ik = gka*(v-ek2)
}
FUNCTION alpn(v(mV)) {
LOCAL zeta
zeta=zetan+pw/(1+exp((v-tq)/qq))
alpn = exp(1.e-3*zeta*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betn(v(mV)) {
LOCAL zeta
zeta=zetan+pw/(1+exp((v-tq)/qq))
betn = exp(1.e-3*zeta*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION alpl(v(mV)) {
alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betl(v(mV)) {
betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
}
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v,sh2)
n' = (ninf - n)/taun
l' = (linf - l)/taul
}
BEFORE STEP { LOCAL i
if(stim_i==0 && flag==0){
vrun=0
vvrun=0
}else{
flag=1
delta=v-vinit
if (count<timestep+1){
vrun= (delta-vrun)*(FK/(count+1))+vrun
vrun2=vrun
}else{
vrun2= (delta)*(FK/(timestep+1))+vrun2*pow((1-FK/(timestep+1)),PK)
}
vvrun=(BK*vrun2/(1+vrun2/CK))
count=count+1
}
sh2=sh+alphash1*vvrun
}
PROCEDURE rates(v (mV),sh2) { :callable from hoc
LOCAL a,qt,i
qt=q10^((celsius-24)/10)
a = alpn(v-sh2)
ninf = 1/(1 + a)
taun = betn(v-sh2)/(qt*a0n*(1+a))
if (taun<nmin) {taun=nmin}
a = alpl(v-sh2)
linf = 1/(1+ a)
taul = 0.26*(v+50-sh2)/qtl
if (taul<lmin/qtl) {taul=lmin/qtl}
}