:Reference :Colbert and Pan 2002
:comment: took the NaTa and shifted both activation/inactivation by 6 mv
NEURON {
SUFFIX NaTa2_t
USEION na READ ena WRITE ina
RANGE vRS0, vRS03, DeltaVrs, gNaTa2_tbar, gNaTa2_t, ina
RANGE scaleNavTwo
}
UNITS {
(S) = (siemens)
(mV) = (millivolt)
(mA) = (milliamp)
}
PARAMETER {
gNaTa2_tbar = 0.00001 (S/cm2)
vRS0 = 6.0 (mV)
vRS03 = 0.0 (mV)
DeltaVrs = 0.0 (mV)
scaleNavTwo = 1.0
}
ASSIGNED {
v (mV)
ena (mV)
ina (mA/cm2)
gNaTa2_t (S/cm2)
mInf
mTau (ms)
mAlpha
mBeta
hInf
hTau (ms)
hAlpha
hBeta
}
STATE {
m
h
}
BREAKPOINT {
SOLVE states METHOD cnexp
gNaTa2_t = scaleNavTwo*gNaTa2_tbar*m*m*m*h
ina = gNaTa2_t*(v-ena)
}
DERIVATIVE states {
rates()
m' = (mInf-m)/mTau
h' = (hInf-h)/hTau
}
INITIAL{
rates()
m = mInf
h = hInf
}
PROCEDURE rates(){
LOCAL qt
qt = 2.3^((34-21)/10)
UNITSOFF
if(v == -(38.0 - (vRS0+DeltaVrs))){
v = v+0.0001
}
mAlpha = (0.182 * (v- -(38.0 - (vRS0+DeltaVrs))))/(1-(exp(-(v- -(38.0 - (vRS0+DeltaVrs)))/6)))
mBeta = (0.124 * (-v -(38.0 - (vRS0+DeltaVrs))))/(1-(exp(-(-v -(38.0 - (vRS0+DeltaVrs)))/6)))
mInf = mAlpha/(mAlpha + mBeta)
mTau = (1/(mAlpha + mBeta))/qt
if(v == -(66.0 - (vRS0+DeltaVrs))){
v = v + 0.0001
}
hAlpha = (-0.015 * (v- -(66.0 - (vRS0+DeltaVrs))))/(1-(exp((v- -(66.0 - (vRS0+DeltaVrs)))/6)))
hBeta = (-0.015 * (-v -(66.0 - (vRS0+DeltaVrs))))/(1-(exp((-v -(66.0 - (vRS0+DeltaVrs)))/6)))
hInf = hAlpha/(hAlpha + hBeta)
hTau = (1/(hAlpha + hBeta))/qt
UNITSON
}