### Here, we make active models with all the channels
import os
os.environ["OMP_NUM_THREADS"] = "1" # export OMP_NUM_THREADS=4
import sys
sys.path.insert(1, "../helperScripts")
import numpy as np
import matplotlib.pyplot as plt
import features as fts
import MOOSEModel as mm
import expcells
import brute_curvefit as bcf
from copy import deepcopy
from tqdm import tqdm
import pandas as pd
from pprint import pprint
from goMultiprocessing import Multiprocessthis_appendsave
import pickle
import json
from scipy import signal
import warnings
# warnings.simplefilter(action="ignore", category=FutureWarning)
# warnings.simplefilter(action="ignore", category=RuntimeWarning)
# warnings.simplefilter(action="ignore", category=RuntimeError)
Featurelist = [
"CellID",
# "E_rest_0",
# "Input resistance",
# "Cell capacitance",
# "Time constant",
"freq_0",
# "sagV_m50",
# "sagrat_m50",
# "AP1_amp_1.5e-10",
# "APp_amp_1.5e-10",
# "AP1_time_1.5e-10",
# "APp_time_1.5e-10",
# "APavgpratio_amp_1.5e-10",
# "AP1_width_1.5e-10",
# "APp_width_1.5e-10",
# "AP1_thresh_1.5e-10",
# "APp_thresh_1.5e-10",
# "AP1_lat_1.5e-10",
# "ISI1_1.5e-10",
# "ISIl_1.5e-10",
"ISIavg_1.5e-10",
# "ISImedian_1.5e-10",
"freq_1.5e-10",
# "Adptn_id_1.5e-10",
# "fAHP_AP1_amp_1.5e-10",
# "DBLO_1.5e-10",
# "DBL_1.5e-10",
# "AP1_amp_3e-10",
# "APp_amp_3e-10",
# "AP1_time_3e-10",
# "APp_time_3e-10",
# "APavgpratio_amp_3e-10",
# "AP1_width_3e-10",
# "APp_width_3e-10",
# "AP1_thresh_3e-10",
# "APp_thresh_3e-10",
# "AP1_lat_3e-10",
# "ISI1_3e-10",
# "ISIl_3e-10",
# "ISIavg_3e-10",
# "ISImedian_3e-10",
# "freq_3e-10",
# "Adptn_id_3e-10",
# "fAHP_AP1_amp_3e-10",
# "DBLO_3e-10",
# "DBL_3e-10",
# "freq300to150ratio",
]
# pasmodelFlist = ['E_rest_0', 'Input resistance', 'Cell capacitance', 'Time constant', 'sagV_m50', 'sagrat_m50', "ISImedian_1.5e-10"]
### get exp cell features ###
LJP = 15e-3
samplingrate = 20000
df_expsummaryactiveF = pd.read_pickle("../helperScripts/expsummaryactiveF.pkl")
######################################################
stimamp = 30e-12
stim_start_chirp = 0.3
stim_end_chirp = 13.3
stim_start = 0.5
stim_end = 1
tstop = 14.5
stimlist_chirp = [
"soma",
"1",
".",
"inject",
f"(t>{stim_start_chirp} & t<{stim_end_chirp}) * sin(2*3.14159265359*(t-{stim_start_chirp})^3) * {stimamp}",
]
stimlist_chirp2 = [
"soma",
"1",
".",
"inject",
f"(t>{stim_start_chirp} & t<{stim_start_chirp+501}) * sin(2*3.14159265359*(t-{stim_start_chirp})^2) * {stimamp}",
]
stimlist_CC = [
"soma",
"1",
".",
"inject",
f"(t>{stim_start} & t<{stim_start+0.5}) * {-25e-12}",
]
stimlist_epsp = [
"soma",
"1",
".",
"inject",
f"(t>{stim_start} & t<{stim_start+0.5}) * {0e-12}",
]
stimlist_150pA = [
"soma",
"1",
".",
"inject",
f"(t>{stim_start} & t<{stim_start+0.5}) * {150e-12}",
]
stimlist_bis = [
"soma",
"1",
".",
"inject",
f"(t>{stim_start} & t<{stim_start+0.2}) * {150e-12} + (t>{stim_start+0.5} & t<{stim_start+0.7}) * {-50e-12}",
]
baseModel = {
"Parameters": {
"notes2": "",
"Morphology": {
"sm_len": 15e-6,
"sm_diam": 15e-6,
"dend_len": 500e-6,
"dend_diam_start": 4e-6,
"dend_diam_end": 4e-6,
"num_dend_segments": 0,
},
"Passive": {
"Em": -82e-3,
"sm_RM": 0.1,
"sm_CM": 0.17,
"sm_RA": 1.59,
"dend_RM": 1.54,
"dend_CM": 0.021,
"dend_RA": 0.73,
},
"Channels": {
"Na_T_Chan": {
"Gbar": 1e-4,
"Erev": 0.06,
"Kinetics": "../Kinetics/Na_T_Chan_Royeck_wslow",
},
"K_DR_Chan": {
"Gbar": 1e-3,
"Erev": -0.100,
"Kinetics": "../Kinetics/K_DR_Chan_Custom3",
"KineticVars": {
"n_vhalf_inf": 0.013,
"n_slope_inf": 0.0087666,
"n_A": 0.0126,
"n_B": 0.0173,
"n_C": 0.0,
"n_D": 0.0,
"n_E": 0.0343,
"n_F": 0.102,
},
},
"h_Chan": {
"Gbar": 1e-8,
"Erev": -0.040,
"Kinetics": "../Kinetics/h_Chan_Hay2011_exact",
},
},
}
}
# Load models from the JSON file
basemodels_list = []
file_path = "../helperScripts/1compt.json"
with open(file_path, "r") as file:
for line in file:
basemodel = json.loads(line)
basemodels_list.append(basemodel)
######################################################################################
def ourfunc(i):
model = deepcopy(baseModel)
pasmodel = basemodels_list[np.random.randint(0, len(basemodels_list))]
model["Parameters"]["notes"] = pasmodel["Parameters"]["notes"]
model["Parameters"]["Morphology"] = pasmodel["Parameters"]["Morphology"]
model["Parameters"]["Passive"] = pasmodel["Parameters"]["Passive"]
if "Gbar" in pasmodel["Parameters"]["Channels"]["h_Chan"].keys():
model["Parameters"]["Channels"]["h_Chan"]["Gbar"] = pasmodel["Parameters"][
"Channels"
]["h_Chan"]["Gbar"]
model["Parameters"]["Channels"]["h_Chan"].pop("gbar", None)
else:
model["Parameters"]["Channels"]["h_Chan"]["Gbar"] = pasmodel["Parameters"][
"Channels"
]["h_Chan"]["gbar"]*np.pi*model["Parameters"]["Morphology"]["sm_len"]*model["Parameters"]["Morphology"]["sm_diam"]
model["Parameters"]["Channels"]["h_Chan"].pop("gbar", None)
model["Parameters"]["Channels"]["Na_T_Chan"]["Gbar"] = 10 ** np.random.uniform(
-7, -5
)
model["Parameters"]["Channels"]["K_DR_Chan"]["Gbar"] = 10 ** np.random.uniform(
-6, -3
)
_ = model["Parameters"]["Channels"]["K_DR_Chan"]["KineticVars"]["n_A"]
model["Parameters"]["Channels"]["K_DR_Chan"]["KineticVars"]["n_A"] = np.random.uniform(_-10e-3, _+10e-3)
_ = model["Parameters"]["Channels"]["K_DR_Chan"]["KineticVars"]["n_B"]
model["Parameters"]["Channels"]["K_DR_Chan"]["KineticVars"]["n_B"] = np.random.uniform(_/5, _*5)
_ = model["Parameters"]["Channels"]["K_DR_Chan"]["KineticVars"]["n_C"]
model["Parameters"]["Channels"]["K_DR_Chan"]["KineticVars"]["n_C"] = np.random.uniform(0, _+10e-3)
_ = model["Parameters"]["Channels"]["K_DR_Chan"]["KineticVars"]["n_D"]
model["Parameters"]["Channels"]["K_DR_Chan"]["KineticVars"]["n_D"] = np.random.uniform(0, _+10e-3)
_ = model["Parameters"]["Channels"]["K_DR_Chan"]["KineticVars"]["n_E"]
model["Parameters"]["Channels"]["K_DR_Chan"]["KineticVars"]["n_E"] = np.random.uniform(_/5, _*2)
_ = model["Parameters"]["Channels"]["K_DR_Chan"]["KineticVars"]["n_F"]
model["Parameters"]["Channels"]["K_DR_Chan"]["KineticVars"]["n_F"] = np.random.uniform(_/2, _*5)
Featurelist_ = Featurelist[1:] ## To remove CellID
modelF = fts.modelfeatures(
model, stim_start=0.5, stim_end=1, refreshKin=True
)
for f in Featurelist_:
if modelF[f] is None:
return [{}]
model["Features"] = modelF
if model["Features"]["freq_1.5e-10"]*model["Features"]["ISIavg_1.5e-10"] < 0.9: ## So that Depolarization blocks are taken care of
return [{}]
for rrow in Featurelist_:
if model["Features"][rrow] < df_expsummaryactiveF.loc[rrow, "10th quantile"]:
return [{}]
if model["Features"][rrow] > df_expsummaryactiveF.loc[rrow, "90th quantile"]:
return [{}]
print('yoooohooooo', model["Features"]["DBLO_1.5e-10"])
return [model]
seeed = np.random.randint(0, 2**32 - 1)
# seeed = 1964186147
print(seeed)
# for i in range(1000):
# model = ourfunc(i)
Multiprocessthis_appendsave(
ourfunc, range(50000), [], ["tempactivemodels.pkl"], seed=seeed, npool=100
)
##############################################################################
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
return float(obj)
if isinstance(obj, np.ndarray):
return obj.tolist()
return super(NpEncoder, self).default(obj)
with open("tempactivemodels.pkl", "rb") as f, open(
'activemodels.json', "a"
) as file:
while True:
model = pickle.load(f)
# pprint(model)
if len(model) > 0:
json.dump(model, file, cls=NpEncoder)
file.write("\n")