# exec(open('../../Compilations/Kinetics/K_DR_Chan_Custom3.py').read())
# K_DR channel parameterized kinetics. Base is experimental kinetics by Migliore2018
# n_E is divided by 2. To compensate, F is multiplied by 1.1 and A shifted right by 0.006
import numpy as np
import pickle
import pandas as pd
import moose
import matplotlib.pyplot as plt
SOMA_A = 3.14e-8
F = 96485.3329
R = 8.314
celsius = 32
dt = 0.05e-3
ENa = 0.092
EK = -0.099
Eh = -0.030
ECa = 0.140
Em = -0.065
#################################
n_vhalf_inf, n_slope_inf, n_A, n_B, n_C, n_D, n_E, n_F = 0.013,0.0087666, 1.26E-02-0.006,1.73E-02,0.00E+00,0.00E+00,3.43E-02/2,1.02E-01*1.1
#################################
Vmin = -0.100
Vmax = 0.100
Vdivs = 3000
# dV = (Vmax-Vmin)/Vdivs
# v = np.arange(Vmin,Vmax, dV)
v = np.linspace(Vmin,Vmax, Vdivs)
Camin = 0.04e-3
Camax = 1
Cadivs = 8000
# dCa = (Camax-Camin)/Cadivs
# ca = np.arange(Camin,Camax, dCa)
ca = np.linspace(Camin,Camax, Cadivs)
def ChanGate(v,vhalf_inf, slope_inf, A, B, C, D, E, F):
# alge model
Inf = 1/(1+np.exp((v-vhalf_inf)/-slope_inf))
yl = (v-A)/-B
yr = (v-A)/E
Tau = (C + (1 + yl/(np.sqrt(1+yl**2)))/2) * (D + (1 + yr/(np.sqrt(1+yr**2)))/2) * F
Tau[Tau<0.00002] = 0.00002
return [Inf,Tau]
def K_DR_Chan(name):
K_DR = moose.HHChannel( '/library/' + name )
K_DR.Ek = EK
K_DR.Gbar = 300.0*SOMA_A
K_DR.Gk = 0.0
K_DR.Xpower = 1.0
K_DR.Ypower = 0.0
K_DR.Zpower = 0
[nInf,nTau] = ChanGate(v,*[n_vhalf_inf, n_slope_inf, n_A, n_B, n_C, n_D, n_E, n_F])
xgate = moose.element( K_DR.path + '/gateX' )
xgate.min = Vmin
xgate.max = Vmax
xgate.divs = Vdivs
xgate.tableA = nInf/nTau
xgate.tableB = 1.0/nTau
return K_DR
if __name__ == "__main__":
[nInf,nTau] = ChanGate(v,*[n_vhalf_inf, n_slope_inf, n_A, n_B, n_C, n_D, n_E, n_F])
[nInf2,nTau2] = ChanGate(v,*[n_vhalf_inf, n_slope_inf, n_A-0.006, n_B, n_C, n_D, n_E/2, n_F*1.1])
# hhh = np.arange(-55e-3 - 0.016, 36e-3 - 0.016, 10e-3)
# parameterfitted_list = np.array([np.array([2.56015621e-09, 1.12713826e-02, 3.82738005e-18, 5.00000000e-01,
# 2.43722849e-09, 2.81531338e-01]), np.array([5.01958073e-09, 1.30315203e-02, 8.51866701e-04, 1.14235667e-01,
# 4.33268931e-09, 1.14243302e-01]), np.array([7.37120030e-09, 1.25073616e-02, 1.36142786e-06, 9.74136065e-02,
# 5.34766250e-09, 9.74163312e-02]), np.array([8.99721426e-09, 9.24950966e-03, 5.35874431e-03, 1.49499585e-01,
# 6.20488857e-09, 1.49505473e-01]), np.array([1.16121395e-08, 7.32873273e-03, 7.26493010e-11, 3.46096004e-01,
# 8.67817670e-09, 5.00000000e-01]), np.array([1.54864626e-08, 7.78551206e-03, 7.15086937e-10, 8.17741596e-02,
# 1.29630899e-08, 7.50310292e-02]), np.array([1.24100284e-08, 1.57381849e-01, 6.50940375e-02, 5.36024556e-02,
# 1.76802248e-08, 6.50738526e-03]), np.array([1.53142103e-08, 5.27067710e-03, 9.55547838e-01, 4.99999411e-01,
# 7.90179057e-09, 1.17767958e-02]), np.array([2.54855042e-08, 6.10498775e-03, 9.12926651e-01, 5.00000000e-01,
# 2.17731422e-09, 6.85336947e-02]), np.array([2.92396179e-08, 6.27161627e-03, 9.02253739e-01, 5.00000000e-01,
# 1.56575057e-09, 1.07168695e-01])])
# nInf_fitted = parameterfitted_list[:,4]/1.8e-8
# nTau_fitted = parameterfitted_list[:,5]
plt.figure()
plt.plot(v, nInf, label='nInf original')
plt.plot(v, nInf2, label='nInf fast')
# plt.plot(hhh, nInf_fitted, label='nInf_fitted')
plt.ylabel('Inf')
plt.legend()
plt.figure()
plt.plot(v, nTau, label='nTau original')
plt.plot(v, nTau2, label='nTau fast')
# plt.plot(hhh, nTau_fitted, label='nTau_fitted')
plt.ylabel('Tau')
plt.legend()
plt.xlabel("Membrane Potential (V)")
plt.title('Potassium channel activation time constant')
plt.show()