# exec(open('../../Compilations/Kinetics/K_SK_Chan_Custom4.py').read())
# Hirschber 1998 exp kinetics. Parameterized but since this uses Ca, not by alge
import numpy as np
import pickle
import pandas as pd
import moose
SOMA_A = 3.14e-8
F = 96485.3329
R = 8.314
celsius = 32
dt = 0.05e-3
ENa = 0.092
EK = -0.099
Eh = -0.030
ECa = 0.140
Em = -0.065
#################################
cac, hillcoeff, m, c = 0.00056, 4.6, 47000, 26
#################################
Vmin = -0.100
Vmax = 0.100
Vdivs = 3000
# dV = (Vmax-Vmin)/Vdivs
# v = np.arange(Vmin,Vmax, dV)
v = np.linspace(Vmin,Vmax, Vdivs)
Camin = 50e-6 #If changing this, be careful that the dCa is at most 0.01e-3
Camax = 3000e-6 #3e-3 works because the tables becomes steady after 3e-3 for K_SK
Cadivs = 4000
# dCa = (Camax-Camin)/Cadivs
# ca = np.arange(Camin,Camax, dCa)
ca = np.linspace(Camin,Camax, Cadivs)
def ChanGate(v,vhalf_inf, slope_inf, A, B, C, D, E, F):
# alge model
Inf = 1/(1+np.exp((v-vhalf_inf)/-slope_inf))
yl = (v-A)/-B
yr = (v-A)/E
Tau = (C + (1 + yl/(np.sqrt(1+yl**2)))/2) * (D + (1 + yr/(np.sqrt(1+yr**2)))/2) * F
Tau[Tau<0.00002] = 0.00002
return [Inf,Tau]
def SKChanGate(ca, cac, hillcoeff, m, c):
car = (ca/cac)**hillcoeff
Inf = car / ( 1 + car )
# Tau = 1 / beta / (1 + car)
Tau = 1/(m*ca + c)
Tau[Tau<0.0002] = 0.0002
return [Inf, Tau]
def K_SK_Chan(name):
K_SK = moose.HHChannel( '/library/' + name )
K_SK.Ek = EK
K_SK.Gbar = 300.0*SOMA_A
K_SK.Gk = 0.0
K_SK.Xpower = 0
K_SK.Ypower = 0
K_SK.Zpower = 3
K_SK.useConcentration = 1
[mInf, mTau] = SKChanGate(ca, cac, hillcoeff, m, c)
zgate = moose.element( K_SK.path + '/gateZ' )
zgate.min = Camin
zgate.max = Camax
zgate.divs = Cadivs
zgate.tableA = mInf/mTau
zgate.tableB = 1.0/mTau
addmsg3 = moose.Mstring( K_SK.path + '/addmsg3' )
addmsg3.value = '../Ca_conc concOut . concen'
return K_SK