COMMENT
Conceptual model: Delayed rectifier current for
a model of a fast-spiking cortical interneuron.
Authors and citation:
Golomb D, Donner K, Shacham L, Shlosberg D, Amitai Y, Hansel D (2007).
Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons.
PLoS Comput Biol 3:e156.
Original implementation and programming language/simulation environment:
by Golomb et al. for XPP
Available from http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=97747
This implementation is by N.T. Carnevale and V. Yamini for NEURON.
ENDCOMMENT
NEURON {
SUFFIX kdrs1
USEION k READ ek WRITE ik
RANGE g,gkdr,ikk
}
UNITS {
(S) = (siemens)
(mV) = (millivolt)
(mA) = (milliamp)
}
PARAMETER {
gkdr = 0.225 (S/cm2)
theta_hn = -20 (mV):-20
sigma_n = 10.4 (mV) : 6.8
q10=3
}
ASSIGNED {
v (mV)
ek (mV)
ik (mA/cm2)
g (S/cm2)
qt
ikk (mA/cm2)
}
STATE {n}
BREAKPOINT {
SOLVE states METHOD cnexp
g = gkdr * n*n
ik = g * (v-ek)
ikk= ik
}
INITIAL {
n = ninfi(v)
}
DERIVATIVE states {
n' = (ninfi(v)-n)/taun(v)
}
FUNCTION ninfi(v (mV)) {
UNITSOFF
ninfi=1/(1 + exp(-(v-theta_hn)/sigma_n))
UNITSON
}
FUNCTION taun(v (mV)) (ms) {
UNITSOFF
:qt = q10^((celsius - 24)/10)
qt = q10^((celsius - 37)/10)
: taun = (((0.087 + 85.4 / (1 + exp ((v+14.6)/8.6))) * (0.087 + 55.4 / (1 + exp (-(v-1.3)/18.7)))))
: taun = (((0.087 + 11.4 / (1 + exp ((v+12.6)/18.6))) * (0.087 + 25.4 / (1 + exp (-(v-18.3)/18.7)))))
taun = (((0.087 + 17.4 / (1 + exp ((v+35.6)/9.6))) * (0.087 + 25.4 / (1 + exp (-(v-1.3)/18.7))))) : equation from kv2 paper
taun=taun/qt
UNITSON
}