COMMENT
Conceptual model: Sodium current for a model of a fast-spiking cortical interneuron.
Authors and citation:
Golomb D, Donner K, Shacham L, Shlosberg D, Amitai Y, Hansel D (2007).
Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons.
PLoS Comput Biol 3:e156.
Original implementation and programming language/simulation environment:
by Golomb et al. for XPP
Available from http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=97747
This implementation is by N.T. Carnevale and V. Yamini for NEURON.
Revisions:
20130415 NTC introduced tiny first order delay in m
so that simulations with fixed dt > 0.02 ms would be stable.
With taum = 0.001 ms, fixed dt simulations show slight differences
in spike timing compared to the original results,
but adaptive integration with cvode.atol (absolute error tolerance) 1e-4
and proper tolerance scaling of these states
statename cvode.atolscale("statename")
v 10
m_nas 1
a_kd 0.1
b_kd "
n_kdr "
h_nas "
produces results nearly identical to the original published figure.
ENDCOMMENT
NEURON {
SUFFIX nas_rs
USEION na READ ena WRITE ina
RANGE gna, g
}
UNITS {
(S) = (siemens)
(mV) = (millivolt)
(mA) = (milliamp)
}
PARAMETER {
gna = 0.1125 (S/cm2) :0.1125
theta_m = -22.8 (mV): -22.8 control -22.8
sigma_m = 11.8 (mV) :11.8
theta_h = -62.9 (mV) :
sigma_h = -10 (mV) :-10.7
theta_t_h = -60 (mV)
sigma_t_h = -12 (mV)
:taum = 0.1 (ms) : for stability with dt>0.01 ms 0.001
q10 =3
}
ASSIGNED {
v (mV)
ena (mV)
ina (mA/cm2)
g (S/cm2)
qt
}
STATE {
m
h
}
BREAKPOINT {
SOLVE states METHOD cnexp
g = gna * h * m^3
ina = g * (v-ena)
}
INITIAL {
m = minfi(v)
h = hinfi(v)
}
DERIVATIVE states {
m' = (minfi(v)-m)/taum(v)
h' = (hinfi(v)-h)/tauh(v)
}
FUNCTION hinfi(v (mV)) {
UNITSOFF
hinfi=1/(1 + exp(-(v-theta_h)/sigma_h))
UNITSON
}
FUNCTION tauh(v (mV)) (ms) {
UNITSOFF
qt = q10^((celsius - 24)/10)
tauh = (.31 + 14 / ( 1 + exp(-(v-theta_t_h)/sigma_t_h))) :0.5 0.71
tauh = tauh/qt
UNITSON
}
FUNCTION taum(v (mV)) (ms) {
UNITSOFF
qt = q10^((celsius - 24)/10)
taum = (((0.022 + 3.6 / (1 + exp ((v+27.9)/7.6))) * (0.009 + 1.9 / (1 + exp (-(v-1.3)/12.7)))))
taum = taum/qt
:printf("%f\n", qt)
UNITSON
}
FUNCTION minfi(v (mV)) {
UNITSOFF
minfi=1/(1 + exp(-(v-theta_m)/sigma_m))
UNITSON
}