TITLE detailed model of glutamate NMDA receptors
COMMENT
-----------------------------------------------------------------------------
Kinetic model of NMDA receptors
===============================
10-state gating model:
Vargas-Caballero & Robinson 2004, J Neurosci. 24(27):6171-6180
D DB
| |
C0 -- C1 -- C2 -- O -- OB -- CB2 -- CB1 -- CB0
Voltage dependence of Mg2+ block and slow voltage dependent unblok:
Vargas-Caballero & Robinson, 2004, J. Neurosci. 24(27):6171-6180
-----------------------------------------------------------------------------
Based on voltage-clamp recordings of NMDA receptor-mediated currents in rat
hippocampal slices (Vargas-Caballero & Robinson 2003 J Neurophysiol 89: 2778-2783), this model
was fit directly to experimental recordings in order to obtain the optimal
values for the parameters (see Vargas-Caballero & Robinson 2004, J. Neurosci. 24(27):6171-6180).
-----------------------------------------------------------------------------
See details in:
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of
synaptic transmission. In: Methods in Neuronal Modeling (2nd edition;
edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp 1-25.
(electronic copy available at http://cns.iaf.cnrs-gif.fr)
Written by Alain Destexhe and Zach Mainen, 1995
-----------------------------------------------------------------------------
These modifications are made by Keivan Moradi 2012:
- Release process modeled with an internal alpha function in order to make it compatible
with NetCon onbject, and therefore does not require an external release mechanism.
- Unit of g changed from pS to uS to make the synaptic weights compatible with
NEURON's internal methods of modeling synapses (e.x. exp2syn)
- gmax is set to 50 Johnson & Ascher, 1990
- Rate constants are corrected to be like the original article
-----------------------------------------------------------------------------
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
POINT_PROCESS NMDA10_2
RANGE C0, C1, C2, D, O, CB0, CB1, CB2, DB, OB
RANGE g, gmax, rb ,rbb, RMgB, RMgU
RANGE T_max, T, tau, tRel, Erev, synon
GLOBAL mg, Rb, Ru, Rd, Rr, Ro, Rc
NONSPECIFIC_CURRENT i
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(uS) = (microsiemens)
(umho) = (micromho)
(mM) = (milli/liter)
(uM) = (micro/liter)
}
PARAMETER {
Erev = -0.7 (mV) : reversal potential
gmax = 50 (pS) : maximal conductance
mg = 1 (mM) : external magnesium concentration
: Rates
Rb = 5000e-3 (/mM /ms) : binding
Ru = 5.5e-3 (/ms) : unbinding
Rd = 8.4e-3 (/ms) : desensitization
Rr = 1.8e-3 (/ms) : resensitization
Ro = 46.5e-3 (/ms) : opening
Rc = 91.6e-3 (/ms) : closing
: alpha function formalism
tau = .3 (ms) <1e-9,1e9>
T_max = 1.5 (mM) : maximum concentration of neurotransmitter
}
ASSIGNED {
v (mV) : postsynaptic voltage
i (nA) : current = g*(v - Erev)
g (uS) : conductance
rb (/ms) : binding
rbb (/ms) : Blocked binding
RMgB (/ms)
RMgU (/ms)
T (mM) : neurotransmiter concentration in the cleft
tRel (ms) : spiking time of the presynaptic cell
synon : turns the synapse on or Off (0 = off) (1 = on)
w : weight of synapse
}
STATE {
: Channel states (all fractions)
C0 : unbound
C1 : single bound
C2 : double bound
D : desensitized
O : open
CB0 : Blocked unbound
CB1 : Blocked single bound
CB2 : Blocked double bound
DB : Blocked desensitized
OB : Blocked open
}
INITIAL {
T = 0
synon = 0
tRel = 0
rates(v)
C0 = 1
C1 = 0
C2 = 0
D = 0
O = 0
CB0 = 0
CB1 = 0
CB2 = 0
DB = 0
OB = 0
}
BREAKPOINT {
SOLVE kstates METHOD sparse
g = w * gmax * O
i = g * (v - Erev)
}
KINETIC kstates {
release(t)
rb = Rb * T
rates(v)
~ C0 <-> C1 ((2 * rb),Ru)
~ C1 <-> C2 (rb,(2 * Ru))
~ C2 <-> D (Rd,Rr)
~ C2 <-> O (Ro,Rc)
~ O <-> OB (RMgB,RMgU)
~ OB <-> CB2 ((3*Rc),Ro)
~ CB2 <-> DB (Rd,Rr)
~ CB2 <-> CB1 ((2 * Ru),rb)
~ CB1 <-> CB0 (Ru,(2 * rb))
CONSERVE C0+C1+C2+D+O+CB0+CB1+CB2+DB+OB = 1
}
NET_RECEIVE(weight) {
if (flag == 0) {
tRel = t : resets the alpha function
synon = 1 : turns the synapse on.
: The alpha function does not require to turn off the synase
w = weight
}
}
PROCEDURE release(t(ms)) {
T = T_max * (t - tRel) / tau * exp(1 - (t - tRel) / tau) * synon
VERBATIM
return 0;
ENDVERBATIM
}
PROCEDURE rates(v(mV)) {
RMgB = 610e-3 * exp(1 (/mV) * -v / 17) * (mg / 1 (mM)) * 1 (/ms) : Magnesium Blocking
RMgU = 5400e-3 * exp(1 (/mV) * v / 47) * 1 (/ms) : Magnesium Unblocking
}