#!/usr/bin/env python
"""
Testing different spatial frequency bandwidths
(c) Laurent Perrinet - INT/CNRS
This is the basis for the following paper:
Claudio Simoncini, Laurent U. Perrinet, Anna Montagnini, Pascal Mamassian, Guillaume S. Masson. More is not always better: dissociation between perception and action explained by adaptive gain control. Nature Neuroscience, 2012.
http://invibe.net/LaurentPerrinet/Publications/Simoncini12
"""
import MotionClouds as mc
import numpy as np
name = 'Simoncini12'
# generates MPEG movies
vext = '.mpg'
# generates MATLAB mat files (uncomment to activate)
#vext = '.mat'
# just generates PNG of first frame
# vext = '.png'
display = False
DEBUG = False
# uncomment to preview movies
#ext, display = None, True
#initialize
fx, fy, ft = mc.get_grids(mc.N_X, mc.N_Y, mc.N_frame)
#fx, fy, ft = mc.get_grids(256, 256, 256)
#fx, fy, ft = mc.get_grids(512, 512, 128)
color = mc.envelope_color(fx, fy, ft)
name_ = mc.figpath + name
# explore parameters
for B_sf in [0.025, 0.05, 0.1, 0.2, 0.4, 0.8]:
name_ = mc.figpath + name + '-B_sf' + str(B_sf).replace('.', '_')
if mc.anim_exist(name_, vext=vext):
z = color * mc.envelope_gabor(fx, fy, ft, B_sf=B_sf, B_theta=np.inf)
# mc.visualize(z, name=name_ + '_envelope')
im = mc.rectif(mc.random_cloud(z))
# mc.cube(im, name=name_ + '_cube')
mc.anim_save(im, name_, display=False, vext=vext)
# mc.anim_save(im, name_, display=False, vext='.gif')
if DEBUG: # control enveloppe's shape
z_low = mc.envelope_gabor(fx, fy, ft, B_sf=0.037, loggabor=False)
z_high = mc.envelope_gabor(fx, fy, ft, B_sf=0.15, loggabor=False)
import pylab, numpy
pylab.clf()
fig = pylab.figure(figsize=(12, 12))
a1 = fig.add_subplot(111)
a1.contour(numpy.fliplr(z_low[:mc.N_X/2, mc.N_Y/2, mc.N_frame/2:].T), [z_low.max()*.5], colors='red')
a1.contour(numpy.fliplr(z_high[:mc.N_X/2, mc.N_Y/2, mc.N_frame/2:].T), [z_high.max()*.5], colors='blue')
a1.set_xlabel('spatial frequency')
a1.set_ylabel('temporal frequency')
fig.savefig(mc.figpath + name + '_envelope_overlap.pdf')
if DEBUG:
# checking for different frequencies
for sf_0 in [0.1 , 0.2, 0.3, 0.8]:
name_ = mc.figpath + name + '-sf_0' + str(sf_0).replace('.', '_')
z = color * mc.envelope_gabor(fx, fy, ft, sf_0=sf_0)
mc.anim_save(mc.rectif(mc.random_cloud(z)), name_, display=display, vext=vext)
# explore different speeds than (V_X = 1, V_Y =0)
for V_X in [1./4, 1./2 , 1. , 2.0]:
name_ = mc.figpath + name + '-V_X' + str(V_X).replace('.', '_')
z = color * mc.envelope_gabor(fx, fy, ft, V_X=V_X)
mc.visualize(z, name=name_)
mc.anim_save(mc.rectif(mc.random_cloud(z)), name_, display=display, vext=vext)
for V_Y in [0.5 , 1.0 , 2.0]:
name_ = mc.figpath + name + '-V_Y' + str(V_Y).replace('.', '_')
z = color*mc.envelope_gabor(fx, fy, ft , V_Y=V_Y)
mc.visualize(z, name=name_)
mc.anim_save(mc.rectif(mc.random_cloud(z)), name_, display=display, vext=vext)
# same stimulus but with different seeds
for seed in [123456, 123457, 123458, 123459]:
name_ = mc.figpath + name + '-seed' + str(seed)
z = mc.rectif(mc.random_cloud(color * mc.envelope_gabor(fx, fy, ft), seed=seed))
mc.anim_save(z, name_, display=display, vext=vext)
# checking for different frequencies
for sf_0 in [0.1 , 0.2, 0.3, 0.8]:
for B_sf in [0.025, 0.05, 0.1, 0.2, 0.4, 0.8]:
name_ = mc.figpath + name + '-sf_0' + str(sf_0).replace('.', '_') + '-B_sf' + str(B_sf).replace('.', '_')
z = color * mc.envelope_gabor(fx, fy, ft, sf_0=sf_0, B_sf=B_sf)
mc.visualize(fx, fy, ft, z, name=name_)
mc.anim_save(mc.rectif(mc.random_cloud(z)), name_, display=display, vext=vext)