TITLE AMPA receptors modelled according to GHK equations
NEURON
{
POINT_PROCESS ghkampaC
USEION na WRITE ina
USEION k WRITE ik
RANGE C, TRise, tau, lr
RANGE Alpha, Beta
RANGE iampa
RANGE P, Pmax
}
UNITS
{
(nA) = (nanoamp)
(mV) = (millivolt)
(uS) = (microsiemens)
(molar) = (1/liter)
(mM) = (millimolar)
R = (k-mole) (joule/degC)
FARADAY = (faraday) (coulomb)
}
PARAMETER
{
TRise=0.6 (ms)<1e-9,1e9> : Andrasfalvy and Magee, JNS, 2001
tau=3 (ms)<1e-9,1e9> : Andrasfalvy and Magee, JNS, 2001
nai = 18 (mM) : Set for a reversal pot of +55mV
nao = 140 (mM)
ki = 140 (mM) : Set for a reversal pot of -90mV
ko = 5 (mM)
celsius = 35 (degC)
Pmax = 1e-6
}
ASSIGNED
{
v (mV)
ina (nA)
ik (nA)
Alpha (/ms mM): forward (binding) rate
Beta (/ms) : backward (unbinding) rate
C (mM) : transmitter concentration
P (cm/s)
iampa (nA)
Area (cm2)
lr
}
STATE
{
S : fraction of open channels
}
INITIAL
{
S = 0
Beta=1/tau
Alpha=1/TRise - Beta
Area=1
}
BREAKPOINT
{
SOLVE states METHOD cnexp
P = (Pmax * S * (Alpha+Beta)) / (Alpha*(1-1/exp(1)))
ina= P*ghk(v, nai, nao,1) * Area
ik= P*ghk(v, ki, ko,1)* Area
iampa=ina+ik : only for display purposes.
}
DERIVATIVE states
{
S'=Alpha * C * (1-S) - Beta * S
}
FUNCTION ghk(v(mV), ci(mM), co(mM),z) (0.001 coul/cm3) {
LOCAL arg, eci, eco
arg = (0.001)*z*FARADAY*v/(R*(celsius+273.15))
eco = co*efun(arg)
eci = ci*efun(-arg)
ghk = (0.001)*z*FARADAY*(eci - eco)
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}