TITLE nahh
: From Traub & Miles "Neuronal networks of the hippocampus" (1991)
: but m^3 instead of m^2
NEURON {
SUFFIX nahh
USEION na READ ena WRITE ina
RANGE gnabar
GLOBAL inf,tau
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
v (mV)
celsius (degC)
gnabar=.300 (mho/cm2)
ena = 55 (mV)
}
STATE {
m h
}
ASSIGNED {
ina (mA/cm2)
inf[2]
tau[2]
}
INITIAL {
mhn(v)
m=inf[0]
h=inf[1]
}
BREAKPOINT {
SOLVE states METHOD cnexp
ina = gnabar*m*m*m*h*(v - ena)
}
DERIVATIVE states {
mhn(v*1(/mV))
m' = (inf[0] - m)/tau[0]
h' = (inf[1] - h)/tau[1]
}
FUNCTION alp(v(mV),i) { LOCAL q10 : order m,h
v=v+65
q10 = 3^((celsius - 30)/10)
if (i==0) {
alp = q10*.32*expM1(13.1-v, 4)
}else if (i==1){
alp = q10*.128*exp((17-v)/18)
}
}
FUNCTION bet(v,i) { LOCAL q10 : order m,h
v=v+65
q10 = 3^((celsius - 30)/10)
if (i==0) {
bet = q10*.28*expM1(v-40.1,5)
}else if (i==1){
bet = q10*4/(exp((40.0-v)/5) + 1)
}
}
FUNCTION expM1(x,y) {
if (fabs(x/y) < 1e-6) {
expM1 = y*(1 - x/y/2)
}else{
expM1 = x/(exp(x/y) - 1)
}
}
PROCEDURE mhn(v) {LOCAL a, b
FROM i=0 TO 1 {
a = alp(v,i)
b=bet(v,i)
tau[i] = 1/(a + b)
inf[i] = a/(a + b)
}
}