"""
Interplay of STDP and input oscillations
----------------------------------------
Figure 4 from:
Muller L, Brette R and Gutkin B (2011) Spike-timing dependent plasticity and
feed-forward input oscillations produce precise and invariant spike phase-locking. Front.
Comput. Neurosci. 5:45. doi: 10.3389/fncom.2011.00045
Description:
In this simulation, a group of IF neurons is given a tonic DC input and a tonic AC input.
The DC input is mediated by current injection (neurons.I, line 62), and the AC input is
mediated by Poisson processes whose rate parameters are oscillating in time. Each neuron in
the group is given a different DC input, ensuring a unique initial phase. After two seconds
of simulation (to integrate out any initial transients), the STDP rule is turned on
(ExponentialSTDP, line 68), and the population of neurons converges to the theoretically
predicted fixed point. As there is some noise in the phase due to the random inputs, the
simulation is averaged over trials (50 in Figure 4, though 10 trials should be fine for
testing).
The trials run in parallel on all available processors (10 trials take about
2 minutes on a modern PC).
"""
### IMPORTS
from brian import *
import multiprocessing
### PARAMETERS
N=5000
M=10
taum=33*ms
tau_pre=20*ms
tau_post=tau_pre
Ee=0*mV
vt=-54*mV
vr=-70*mV
El=-70*mV
taue=5*ms
f=20*Hz
theta_period = 1/f
Rm=200*Mohm
a = linspace(51,65,num=M)
weights = .001
ratio=1.50
dA_pre=.01
dA_post=.01*ratio
trials=10
### SIMULATION LOOP
def trial(n): # n is the trial number
reinit_default_clock()
clear(True)
eqs_neurons='''
dv/dt=((ge*(Ee-vr))+Rm*I+(El-v))/taum : volt
dge/dt=-ge/taue : 1
I : amp
'''
inputs = PoissonGroup(N,rates=lambda t:((.5-.5*cos(2*pi*f*t)))*10*Hz)
neurons=NeuronGroup(M,model=eqs_neurons,threshold=vt,reset=vr)
neurons.I = a*pA
synapses=Connection(inputs,neurons,'ge',weight=weights)
neurons.v=vr
S = SpikeMonitor(neurons)
run(2*second)
stdp=ExponentialSTDP(synapses,tau_pre,tau_post,dA_pre,-dA_post,wmax=10*weights,interactions='all',update='additive')
run(5*second)
phase=zeros((M,200))
for b in range(0,M):
tmp_phase=(S[b]%theta_period)*(360/theta_period)
phase[b,range(0,len(tmp_phase))] = tmp_phase
return phase
if __name__=='__main__': # This is very important on Windows, otherwise the machine crashes!
phase = zeros((M,200,trials))
print "This will take approximately 2 minutes."
pool=multiprocessing.Pool() # uses all available processors b
results=pool.map(trial,range(trials))
for i in range(trials):
phase[:,:,i]=results[i]
### PLOTTING
for b in range(0,M):
m = mean(phase[b,:,:],axis=1)
st = std(phase[b,:,:],axis=1)/sqrt(trials)
errorbar(range(0,135), m[range(0,135)], yerr=st[range(0,135)], xerr=None,
fmt='-', ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False)
title('STDP + Oscillations Simulation')
xlabel('Spike Number')
ylabel('Spike Phase (deg)')
xlim([0, 135])
ylim([140, 280])
show()