# ConnPlotter --- A Tool to Generate Connectivity Pattern Matrices
#
# This file is part of ConnPlotter.
#
# Copyright (C) 2009 Hans Ekkehard Plesser/UMB
#
# ConnPlotter is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# ConnPlotter is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ConnPlotter. If not, see <http://www.gnu.org/licenses/>.
"""
More complex example model.
"""
def complex():
"""
Build lists representing more complex network model.
Returns:
layerList, connectList, modelList
"""
def modCopy(orig, diff):
"""Create copy of dict orig, update with diff, return."""
assert(isinstance(orig, dict))
assert(isinstance(diff, dict))
tmp = orig.copy()
tmp.update(diff)
return tmp
N = 40
# We use the ht_neuron here, as it has AMPA, NMDA, GABA_A, GABA_B synapses
modelList = [('ht_neuron', m, {}) for m in ['E', 'I']]
# We also have to add an explicit synapse model for each of the four
# synapse types, so that NEST will know how to connect to the different
# synapses.
import nest # we need information from NEST here
ht_rc = nest.GetDefaults('ht_neuron')['receptor_types']
modelList += [('ht_synapse', syn, {'receptor_type': ht_rc[syn]})
for syn in ('AMPA', 'NMDA', 'GABA_A', 'GABA_B')]
layerList = [('IG', {'columns': N, 'rows': N, 'extent': [1.0, 1.0],
'elements': 'poisson_generator'}),
('RG', {'columns': N, 'rows': N, 'extent': [1.0, 1.0],
'elements': ['E', 'I']})]
common = {'connection_type': 'divergent',
'synapse_model' : 'static_synapse',
'delays' : 1.0}
connectList = [
('IG', 'RG',
modCopy(common, {'targets': {'model': 'E'},
'mask' : {'circular': {'radius': 0.2}},
'kernel' : 0.8,
'synapse_model': 'AMPA',
'weights': 5.0})),
('IG', 'RG',
modCopy(common, {'targets': {'model': 'I'},
'mask' : {'circular': {'radius': 0.3}},
'kernel' : 0.4,
'synapse_model': 'AMPA',
'weights': 2.0})),
('RG', 'RG',
modCopy(common, {'sources': {'model': 'E'},
'targets': {'model': 'E'},
'mask' : {'rectangular':
{'lower_left' : [-0.4,-0.2],
'upper_right': [ 0.4, 0.2]}},
'kernel' : 1.0,
'synapse_model': 'AMPA',
'weights': 2.0})),
('RG', 'RG',
modCopy(common, {'sources': {'model': 'E'},
'targets': {'model': 'E'},
'mask' : {'rectangular':
{'lower_left' : [-0.2,-0.4],
'upper_right': [ 0.2, 0.4]}},
'kernel' : 1.0,
'synapse_model': 'NMDA',
'weights': 2.0})),
('RG', 'RG',
modCopy(common, {'sources': {'model': 'E'},
'targets': {'model': 'I'},
'mask' : {'circular': {'radius': 0.5}},
'kernel' : {'gaussian':
{'p_center': 1.0,
'sigma' : 1.0}},
'synapse_model': 'AMPA',
'weights': 1.0})),
('RG', 'RG',
modCopy(common, {'sources': {'model': 'I'},
'targets': {'model': 'E'},
'mask' : {'circular': {'radius': 0.25}},
'kernel' : {'gaussian':
{'p_center': 1.0,
'sigma' : 0.5}},
'synapse_model': 'GABA_A',
'weights': -3.0})),
('RG', 'RG',
modCopy(common, {'sources': {'model': 'I'},
'targets': {'model': 'E'},
'mask' : {'circular': {'radius': 0.5}},
'kernel' : {'gaussian':
{'p_center': 0.5,
'sigma' : 0.3}},
'synapse_model': 'GABA_B',
'weights': -1.0})),
('RG', 'RG',
modCopy(common, {'sources': {'model': 'I'},
'targets': {'model': 'I'},
'mask' : {'circular': {'radius': 1.0}},
'kernel' : 0.1,
'synapse_model': 'GABA_A',
'weights': -0.5}))
]
return layerList, connectList, modelList