/*
 *  hh_psc_alpha.h
 *
 *  This file is part of NEST.
 *
 *  Copyright (C) 2004 The NEST Initiative
 *
 *  NEST is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  NEST is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with NEST.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#ifndef HH_PSC_ALPHA_H
#define HH_PSC_ALPHA_H

#include "config.h"

#ifdef HAVE_GSL

#include "nest.h"
#include "event.h"
#include "archiving_node.h"
#include "ring_buffer.h"
#include "connection.h"

#include "universal_data_logger.h"
#include "recordables_map.h"

#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv.h>
#include <gsl/gsl_sf_exp.h>

namespace nest{

  using std::vector;

  /**
   * Function computing right-hand side of ODE for GSL solver.
   * @note Must be declared here so we can befriend it in class.
   * @note Must have C-linkage for passing to GSL. Internally, it is
   *       a first-class C++ function, but cannot be a member function
   *       because of the C-linkage.
   * @note No point in declaring it inline, since it is called
   *       through a function pointer.
   * @param void* Pointer to model neuron instance.
   */
  extern "C"
  int hh_psc_alpha_dynamics(double, const double*, double*, void*);

 /* BeginDocumentation
Name: hh_psc_alpha - Hodgkin Huxley neuron model.

Description:

  hh_psc_alpha is an implementation of a spiking neuron using the Hodkin-Huxley formalism.
  
  (1) Post-syaptic currents 
  Incoming spike events induce a post-synaptic change of current modelled
  by an alpha function. The alpha function is normalised such that an event of
  weight 1.0 results in a peak current of 1 pA. 


  (2) Spike Detection
  Spike detection is done by a combined threshold-and-local-maximum search: if there 
  is a local maximum above a certain threshold of the membrane potential, it is considered a spike.

Parameters: 

  The following parameters can be set in the status dictionary.

  V_m        double - Membrane potential in mV 
  E_L        double - Resting membrane potential in mV. 
  g_L        double - Leak conductance in nS.
  C_m        double - Capacity of the membrane in pF.
  tau_ex     double - Rise time of the excitatory synaptic alpha function in ms.
  tau_in     double - Rise time of the inhibitory synaptic alpha function in ms.
  E_Na       double - Sodium reversal potential in mV.
  g_Na       double - Sodium peak conductance in nS.
  E_K        double - Potassium reversal potential in mV.
  g_K        double - Potassium peak conductance in nS.
  Act_m      double - Activation variable m
  Act_h      double - Activation variable h
  Inact_n    double - Inactivation variable n
  I_e        double - Constant external input current in pA.

Problems/Todo:

  better spike detection
  initial wavelet/spike at simulation onset
  
References:
  
  Spiking Neuron Models: 
  Single Neurons, Populations, Plasticity   
  Wulfram Gerstner, Werner Kistler,  Cambridge University Press 

  Theoretical Neuroscience: 
  Computational and Mathematical Modeling of Neural Systems
  Peter Dayan, L. F. Abbott, MIT Press (parameters taken from here)

  Hodgkin, A. L. and Huxley, A. F., 
  A Quantitative Description of Membrane Current 
  and Its Application to Conduction and Excitation in Nerve, 
  Journal of Physiology, 117, 500-544 (1952)

Sends: SpikeEvent

Receives: SpikeEvent, CurrentEvent, DataLoggingRequest

Authors: Schrader
SeeAlso: hh_cond_exp_traub
*/
  
  class hh_psc_alpha:
    public Archiving_Node
  {
    
  public:        
    
    typedef Node base;
    
    hh_psc_alpha();
    hh_psc_alpha(const hh_psc_alpha&);
    ~hh_psc_alpha();

    /**
     * Import sets of overloaded virtual functions.
     * We need to explicitly include sets of overloaded
     * virtual functions into the current scope.
     * According to the SUN C++ FAQ, this is the correct
     * way of doing things, although all other compilers
     * happily live without.
     */

    using Node::connect_sender;
    using Node::handle;

    port check_connection(Connection&, port);
    
    void handle(SpikeEvent &);
    void handle(CurrentEvent &);
    void handle(DataLoggingRequest &);
    
    port connect_sender(SpikeEvent &, port);
    port connect_sender(CurrentEvent &, port);
    port connect_sender(DataLoggingRequest &, port);

    /**
     * Return membrane potential at time t.
  potentials_.connect_logging_device();
     * This function is not thread-safe and should not be used in threaded
     * contexts to access the current membrane potential values.
     * @param Time the current network time
     *
     */
    double_t get_potential(Time const &) const;

    /**
     * Define current membrane potential.
     * This function is thread-safe and should be used in threaded
     * contexts to change the current membrane potential value.
     * @param Time     the current network time
     * @param double_t new value of the mebrane potential
     *
     */
    void set_potential(Time const &, double_t);
    
    void get_status(DictionaryDatum &) const;
    void set_status(const DictionaryDatum &);
    
  private:
    void init_state_(const Node& proto);
    void init_buffers_();
    void calibrate();
    void update(Time const &, const long_t, const long_t);

    // END Boilerplate function declarations ----------------------------

    // Friends --------------------------------------------------------

    // make dynamics function quasi-member
    friend int hh_psc_alpha_dynamics(double, const double*, double*, void*);

    // The next two classes need to be friend to access the State_ class/member
    friend class RecordablesMap<hh_psc_alpha>;
    friend class UniversalDataLogger<hh_psc_alpha>;

  private:

    // ---------------------------------------------------------------- 

    //! Independent parameters
    struct Parameters_ {
      double_t t_ref_;    //!< refractory time in ms
      double_t g_Na;			//!< Sodium Conductance in nS
      double_t g_K;  			//!< Potassium Conductance in nS
      double_t g_L;       //!< Leak Conductance in nS
      double_t C_m;       //!< Membrane Capacitance in pF
      double_t E_Na;			//!< Sodium Reversal Potential in mV
      double_t E_K;	  		//!< Potassium Reversal Potential in mV
      double_t E_L;       //!< Leak reversal Potential (aka resting potential) in mV
      double_t tau_synE;  //!< Synaptic Time Constant Excitatory Synapse in ms
      double_t tau_synI;  //!< Synaptic Time Constant for Inhibitory Synapse in ms
      double_t I_e;       //!< Constant Current in pA

      Parameters_();  //!< Sets default parameter values

      void get(DictionaryDatum&) const;  //!< Store current values in dictionary
      void set(const DictionaryDatum&);  //!< Set values from dicitonary
    };
      
  public:
    // ---------------------------------------------------------------- 

    /**
     * State variables of the model.
     * @note Copy constructor and assignment operator required because
     *       of C-style array.
     */
    struct State_ {
  
      /**
       * Enumeration identifying elements in state array State_::y_.
       * The state vector must be passed to GSL as a C array. This enum
       * identifies the elements of the vector. It must be public to be
       * accessible from the iteration function.
       */  
      enum StateVecElems
	{
	  V_M   = 0,
	  HH_M     ,  // 1
	  HH_H     ,  // 2
	  HH_N     ,  // 3
	  DI_EXC   ,  // 4
	  I_EXC    ,  // 5
	  DI_INH   ,  // 6
	  I_INH    ,  // 7
	  STATE_VEC_SIZE
	};


      double_t y_[STATE_VEC_SIZE];  //!< neuron state, must be C-array for GSL solver
      int_t    r_;           //!< number of refractory steps remaining

      State_(const Parameters_&);  //!< Default initialization
      State_(const State_&);
      State_& operator=(const State_&);

      void get(DictionaryDatum&) const;
      void set(const DictionaryDatum&);
    };    

    // ---------------------------------------------------------------- 

  private:
    /**
     * Buffers of the model.
     */
    struct Buffers_ {
      Buffers_(hh_psc_alpha&);                   //!<Sets buffer pointers to 0
      Buffers_(const Buffers_&, hh_psc_alpha&);  //!<Sets buffer pointers to 0

      //! Logger for all analog data
      UniversalDataLogger<hh_psc_alpha> logger_;

      /** buffers and sums up incoming spikes/currents */
      RingBuffer spike_exc_;
      RingBuffer spike_inh_;
      RingBuffer currents_;

      /** GSL ODE stuff */
      gsl_odeiv_step*    s_;    //!< stepping function
      gsl_odeiv_control* c_;    //!< adaptive stepsize control function
      gsl_odeiv_evolve*  e_;    //!< evolution function
      gsl_odeiv_system   sys_;  //!< struct describing system
      
      // IntergrationStep_ should be reset with the neuron on ResetNetwork,
      // but remain unchanged during calibration. Since it is initialized with
      // step_, and the resolution cannot change after nodes have been created,
      // it is safe to place both here.
      double_t step_;           //!< step size in ms
      double   IntegrationStep_;//!< current integration time step, updated by GSL

      /** 
       * Input current injected by CurrentEvent.
       * This variable is used to transport the current applied into the
       * _dynamics function computing the derivative of the state vector.
       * It must be a part of Buffers_, since it is initialized once before
       * the first simulation, but not modified before later Simulate calls.
       */
      double_t I_stim_;
    };

     // ---------------------------------------------------------------- 

     /**
      * Internal variables of the model.
      */
     struct Variables_ { 
      /** initial value to normalise excitatory synaptic current */
      double_t PSCurrInit_E_; 
   
      /** initial value to normalise inhibitory synaptic current */
      double_t PSCurrInit_I_;    

      int_t    RefractoryCounts_;
     };

    // Access functions for UniversalDataLogger -------------------------------
    
    //! Read out state vector elements, used by UniversalDataLogger
    template <State_::StateVecElems elem>
    double_t get_y_elem_() const { return S_.y_[elem]; }

    // ---------------------------------------------------------------- 

    Parameters_ P_;
    State_      S_;
    Variables_  V_;
    Buffers_    B_;

    //! Mapping of recordables names to access functions
    static RecordablesMap<hh_psc_alpha> recordablesMap_;
  };

  inline
  port hh_psc_alpha::check_connection(Connection& c, port receptor_type)
  {
    SpikeEvent e;
    e.set_sender(*this);
    c.check_event(e);
    return c.get_target()->connect_sender(e, receptor_type);
  }

  inline
  port hh_psc_alpha::connect_sender(SpikeEvent&, port receptor_type)
  {
    if (receptor_type != 0)
      throw UnknownReceptorType(receptor_type, get_name());
    return 0;
  }
 
  inline
  port hh_psc_alpha::connect_sender(CurrentEvent&, port receptor_type)
  {
    if (receptor_type != 0)
      throw UnknownReceptorType(receptor_type, get_name());
    return 0;
  }
   
  inline
  port hh_psc_alpha::connect_sender(DataLoggingRequest& dlr, 
				    port receptor_type)
  {
    if (receptor_type != 0)
      throw UnknownReceptorType(receptor_type, get_name());
    return B_.logger_.connect_logging_device(dlr, recordablesMap_);
  }

  inline
  void hh_psc_alpha::get_status(DictionaryDatum &d) const
  {
    P_.get(d);
    S_.get(d);
    Archiving_Node::get_status(d);

    (*d)[names::recordables] = recordablesMap_.get_list();
  }

  inline
  void hh_psc_alpha::set_status(const DictionaryDatum &d)
  {
    Parameters_ ptmp = P_;  // temporary copy in case of errors
    ptmp.set(d);                       // throws if BadProperty
    State_      stmp = S_;  // temporary copy in case of errors
    stmp.set(d);                 // throws if BadProperty

    // We now know that (ptmp, stmp) are consistent. We do not 
    // write them back to (P_, S_) before we are also sure that 
    // the properties to be set in the parent class are internally 
    // consistent.
    Archiving_Node::set_status(d);

    // if we get here, temporaries contain consistent set of properties
    P_ = ptmp;
    S_ = stmp;
  }

} // namespace

#endif //HAVE_GSL
#endif //HH_PSC_ALPHA_H