/*
 *  iaf_tum_2000.cpp
 *
 *  This file is part of NEST.
 *
 *  Copyright (C) 2004 The NEST Initiative
 *
 *  NEST is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  NEST is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with NEST.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include "exceptions.h"
#include "iaf_tum_2000.h"
#include "network.h"
#include "dict.h"
#include "integerdatum.h"
#include "doubledatum.h"
#include "dictutils.h"
#include "numerics.h"
#include "universal_data_logger_impl.h"

#include <limits>

/* ---------------------------------------------------------------- 
 * Recordables map
 * ---------------------------------------------------------------- */

nest::RecordablesMap<nest::iaf_tum_2000> nest::iaf_tum_2000::recordablesMap_;

namespace nest
{
  // Override the create() method with one call to RecordablesMap::insert_() 
  // for each quantity to be recorded.
  template <>
  void RecordablesMap<iaf_tum_2000>::create()
  {
    // use standard names whereever you can for consistency!
    insert_(names::V_m, &iaf_tum_2000::get_V_m_);
    insert_(names::I_syn_ex, &iaf_tum_2000::get_I_syn_ex_);
    insert_(names::I_syn_in, &iaf_tum_2000::get_I_syn_in_);
  }
}

  /* ---------------------------------------------------------------- 
   * Default constructors defining default parameters and state
   * ---------------------------------------------------------------- */
    
  nest::iaf_tum_2000::Parameters_::Parameters_()
    : Tau_          ( 10.0      ),    // in ms
      C_            (250.0      ),    // in pF
      tau_ref_tot_  (  2.0      ),    // in ms
      tau_ref_abs_  (  2.0      ),    // in ms
      U0_           (-70.0      ),    // in mV
      I_e_          (  0.0      ),    // in pA
      Theta_        (-55.0 - U0_),    // relative U0_
      V_reset_      (-70.0 - U0_),    // in mV
      tau_ex_       (  2.0      ),    // in ms
      tau_in_       (  2.0      )     // in ms
  {}

  nest::iaf_tum_2000::State_::State_()
    :  i_0_      (0.0),
       i_syn_ex_ (0.0),
       i_syn_in_ (0.0),
       V_m_      (0.0),
       r_abs_    (0),
       r_tot_    (0)
  {}

  /* ---------------------------------------------------------------- 
   * Parameter and state extractions and manipulation functions
   * ---------------------------------------------------------------- */

  void nest::iaf_tum_2000::Parameters_::get(DictionaryDatum &d) const
  {
    def<double>(d, names::E_L, U0_);   // Resting potential
    def<double>(d, names::I_e, I_e_);
    def<double>(d, names::V_th, Theta_+U0_); // threshold value
    def<double>(d, names::V_reset, V_reset_+U0_);
    def<double>(d, names::C_m, C_);
    def<double>(d, names::tau_m, Tau_);
    def<double>(d, names::tau_syn_ex, tau_ex_);
    def<double>(d, names::tau_syn_in, tau_in_);
    def<double>(d, names::t_ref_abs, tau_ref_abs_);
    def<double>(d, names::t_ref_tot, tau_ref_tot_);
  }

  double nest::iaf_tum_2000::Parameters_::set(const DictionaryDatum& d)
  {
    // if U0_ is changed, we need to adjust all variables defined relative to U0_
    const double ELold = U0_;
    updateValue<double>(d, names::E_L, U0_);
    const double delta_EL = U0_ - ELold;

    if(updateValue<double>(d, names::V_reset, V_reset_))
      V_reset_ -= U0_;
    else
      V_reset_ -= delta_EL;

    if (updateValue<double>(d, names::V_th, Theta_)) 
      Theta_ -= U0_;
    else
      Theta_ -= delta_EL;

    updateValue<double>(d, names::I_e, I_e_);
    updateValue<double>(d, names::C_m, C_);
    updateValue<double>(d, names::tau_m, Tau_);
    updateValue<double>(d, names::tau_syn_ex, tau_ex_);
    updateValue<double>(d, names::tau_syn_in, tau_in_);
    updateValue<double>(d, names::t_ref_abs, tau_ref_abs_);
    updateValue<double>(d, names::t_ref_tot, tau_ref_tot_);

    if ( V_reset_ >= Theta_ )
      throw BadProperty("Reset potential must be smaller than threshold.");
  
    if ( tau_ref_abs_ > tau_ref_tot_ )
      throw BadProperty("Total refractory period must be larger or equal than absolute refractory time.");
    
    if ( C_ <= 0 )
      throw BadProperty("Capacitance must be strictly positive.");
    
    if ( Tau_ <= 0 || tau_ex_ <= 0 || tau_in_ <= 0 || 
	 tau_ref_tot_ <= 0 || tau_ref_abs_ <=0)
      throw BadProperty("All time constants must be strictly positive.");
    
    if ( Tau_ == tau_ex_ || Tau_ == tau_in_ )
      throw BadProperty("Membrane and synapse time constant(s) must differ."
			"See note in documentation.");

    return delta_EL;
  }

  void nest::iaf_tum_2000::State_::get(DictionaryDatum &d, const Parameters_& p) const
  {
    def<double>(d, names::V_m, V_m_ + p.U0_); // Membrane potential
  }

  void nest::iaf_tum_2000::State_::set(const DictionaryDatum& d, const Parameters_& p, double delta_EL)
  {
    if ( updateValue<double>(d, names::V_m, V_m_) )
      V_m_ -= p.U0_;
    else
      V_m_ -= delta_EL;
  }

  nest::iaf_tum_2000::Buffers_::Buffers_(iaf_tum_2000 &n)
    : logger_(n)
  {}

  nest::iaf_tum_2000::Buffers_::Buffers_(const Buffers_ &, iaf_tum_2000 &n)
   : logger_(n)
  {} 

  /* ---------------------------------------------------------------- 
   * Default and copy constructor for node
   * ---------------------------------------------------------------- */

  nest::iaf_tum_2000::iaf_tum_2000()
    : Archiving_Node(), 
      P_(), 
      S_(),
      B_(*this)
  {
    recordablesMap_.create();
  }

  nest::iaf_tum_2000::iaf_tum_2000(const iaf_tum_2000& n)
    : Archiving_Node(n), 
      P_(n.P_), 
      S_(n.S_),
      B_(n.B_, *this)
  {}

  /* ---------------------------------------------------------------- 
   * Node initialization functions
   * ---------------------------------------------------------------- */

  void nest::iaf_tum_2000::init_state_(const Node& proto)
  {
    const iaf_tum_2000& pr = downcast<iaf_tum_2000>(proto);
    S_ = pr.S_;
  }

  void nest::iaf_tum_2000::init_buffers_()
  {
    B_.spikes_ex_.clear();       // includes resize
    B_.spikes_in_.clear();       // includes resize
    B_.currents_.clear();        // includes resize
    B_.logger_.reset(); // includes resize
    Archiving_Node::clear_history();
  }

  void nest::iaf_tum_2000::calibrate()
  {
    B_.logger_.init();

    const double h = Time::get_resolution().get_ms(); 

    // numbering of state vaiables: i_0 = 0, i_syn_ = 1, V_m_ = 2

    // commented out propagators: forward Euler
    // needed to exactly reproduce Tsodyks network
 
    // these P are independent
    V_.P11ex_ = std::exp(-h/P_.tau_ex_);
    //P11ex_ = 1.0-h/tau_ex_;

    V_.P11in_ = std::exp(-h/P_.tau_in_);
    //P11in_ = 1.0-h/tau_in_;

    V_.P22_ = std::exp(-h/P_.Tau_);
    //P22_ = 1.0-h/Tau_;

    // these depend on the above. Please do not change the order.
    // TODO: use expm1 here to improve accuracy for small timesteps

    V_.P21ex_ = P_.Tau_/(P_.C_*(1.0-P_.Tau_/P_.tau_ex_)) * V_.P11ex_ 
      * (1.0 - std::exp(h*(1.0/P_.tau_ex_-1.0/P_.Tau_)));
    //P21ex_ = h/C_;

    V_.P21in_ = P_.Tau_/(P_.C_*(1.0-P_.Tau_/P_.tau_in_)) * V_.P11in_ 
      * (1.0 - std::exp(h*(1.0/P_.tau_in_-1.0/P_.Tau_)));
    //P21in_ = h/C_;

    V_.P20_ = P_.Tau_/P_.C_*(1.0 - V_.P22_);
    //P20_ = h/C_;
  

    // TauR specifies the length of the absolute refractory period as 
    // a double_t in ms. The grid based iaf_tum_2000 can only handle refractory
    // periods that are integer multiples of the computation step size (h).
    // To ensure consistency with the overall simulation scheme such conversion
    // should be carried out via objects of class nest::Time. The conversion 
    // requires 2 steps:
    //     1. A time object r is constructed defining  representation of 
    //        TauR in tics. This representation is then converted to computation time
    //        steps again by a strategy defined by class nest::Time.
    //     2. The refractory time in units of steps is read out get_steps(), a member
    //        function of class nest::Time.
    //
    // Choosing a TauR that is not an integer multiple of the computation time 
    // step h will leed to accurate (up to the resolution h) and self-consistent
    // results. However, a neuron model capable of operating with real valued spike
    // time may exhibit a different effective refractory time.
    //

    V_.RefractoryCountsAbs_ = Time(Time::ms(P_.tau_ref_abs_)).get_steps(); 

    V_.RefractoryCountsTot_ = Time(Time::ms(P_.tau_ref_tot_)).get_steps(); 
  
    if ( V_.RefractoryCountsAbs_ < 1 )
      throw BadProperty("Absolute refractory time must be at least one time step.");

    if ( V_.RefractoryCountsTot_ < 1 )
      throw BadProperty("Total refractory time must be at least one time step.");
  }

  void nest::iaf_tum_2000::update(Time const & origin, const long_t from, const long_t to)
  {
    assert(to >= 0 && (delay) from < Scheduler::get_min_delay());
    assert(from < to);

    // evolve from timestep 'from' to timestep 'to' with steps of h each
    for ( long_t lag = from ; lag < to ; ++lag )
      {
	
	if ( S_.r_abs_ == 0 ) // neuron not refractory, so evolve V
	  S_.V_m_ = S_.V_m_*V_.P22_ + S_.i_syn_ex_*V_.P21ex_ + S_.i_syn_in_*V_.P21in_ + (P_.I_e_+S_.i_0_)*V_.P20_; 
	else 
	  --S_.r_abs_; // neuron is absolute refractory

	// exponential decaying PSCs
	S_.i_syn_ex_ *= V_.P11ex_;
	S_.i_syn_in_ *= V_.P11in_;
	S_.i_syn_ex_ += B_.spikes_ex_.get_value(lag);            // the spikes arriving at T+1 have an
	S_.i_syn_in_ += B_.spikes_in_.get_value(lag);            // the spikes arriving at T+1 have an
	// immediate effect on the state of the neuron
                                                       
	if (S_.r_tot_ == 0)
	  {
	    if (S_.V_m_ >= P_.Theta_)     // threshold crossing
	      {
		S_.r_abs_ = V_.RefractoryCountsAbs_;
		S_.r_tot_ = V_.RefractoryCountsTot_;
		S_.V_m_ = P_.V_reset_;
        
		set_spiketime(Time::step(origin.get_steps()+lag+1));
        
		SpikeEvent se;
		network()->send(*this, se, lag);
	      }
	  }
	else
	  --S_.r_tot_; // neuron is totally refractory (cannot generate spikes)


	// set new input current
	S_.i_0_ = B_.currents_.get_value(lag);

	// logging
	B_.logger_.record_data(origin.get_steps()+lag);
      }  
  }                           
                     
  void nest::iaf_tum_2000::handle(SpikeEvent & e)
  {
    assert(e.get_delay() > 0);

    if (e.get_weight() >= 0.0)
      B_.spikes_ex_.add_value(e.get_rel_delivery_steps(network()->get_slice_origin()), 
			      e.get_weight() * e.get_multiplicity() );
    else
      B_.spikes_in_.add_value(e.get_rel_delivery_steps(network()->get_slice_origin()), 
			      e.get_weight() * e.get_multiplicity() );

  }

  void nest::iaf_tum_2000::handle(CurrentEvent& e)
  {
    assert(e.get_delay() > 0);

    const double_t c=e.get_current();
    const double_t w=e.get_weight();

    // add weighted current; HEP 2002-10-04
    B_.currents_.add_value(e.get_rel_delivery_steps(network()->get_slice_origin()), w*c);
  }
  
  void nest::iaf_tum_2000::handle(DataLoggingRequest& e)
  {
    B_.logger_.handle(e);
  }