/*
* stdp_connection.h
*
* This file is part of NEST.
*
* Copyright (C) 2004 The NEST Initiative
*
* NEST is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* NEST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with NEST. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef STDP_CONNECTION_H
#define STDP_CONNECTION_H
/* BeginDocumentation
Name: stdp_synapse - Synapse type for spike-timing dependent
plasticity.
Description:
stdp_synapse is a connector to create synapses with spike time
dependent plasticity (as defined in [1]). Here the weight dependence
exponent can be set separately for potentiation and depression.
Examples:
multiplicative STDP [2] mu_plus = mu_minus = 1.0
additive STDP [3] mu_plus = mu_minus = 0.0
Guetig STDP [1] mu_plus = mu_minus = [0.0,1.0]
van Rossum STDP [4] mu_plus = 0.0 mu_minus = 1.0
Parameters:
tau_plus double - Time constant of STDP window, potentiation in ms
(tau_minus defined in post-synaptic neuron)
lambda double - Step size
alpha double - Asymmetry parameter (scales depressing increments as alpha*lambda)
mu_plus double - Weight dependence exponent, potentiation
mu_minus double - Weight dependence exponent, depression
Wmax double - Maximum allowed weight
Transmits: SpikeEvent
References:
[1] Guetig et al. (2003) Learning Input Correlations through Nonlinear
Temporally Asymmetric Hebbian Plasticity. Journal of Neuroscience
[2] Rubin, J., Lee, D. and Sompolinsky, H. (2001). Equilibrium
properties of temporally asymmetric Hebbian plasticity, PRL
86,364-367
[3] Song, S., Miller, K. D. and Abbott, L. F. (2000). Competitive
Hebbian learning through spike-timing-dependent synaptic
plasticity,Nature Neuroscience 3:9,919--926
[4] van Rossum, M. C. W., Bi, G-Q and Turrigiano, G. G. (2000).
Stable Hebbian learning from spike timing-dependent
plasticity, Journal of Neuroscience, 20:23,8812--8821
FirstVersion: March 2006
Author: Moritz Helias, Abigail Morrison
SeeAlso: synapsedict, tsodyks_synapse, static_synapse
*/
#include "connection_het_wd.h"
#include "archiving_node.h"
#include "generic_connector.h"
#include <cmath>
namespace nest
{
class STDPConnection : public ConnectionHetWD
{
public:
/**
* Default Constructor.
* Sets default values for all parameters. Needed by GenericConnectorModel.
*/
STDPConnection();
/**
* Copy constructor.
* Needs to be defined properly in order for GenericConnector to work.
*/
STDPConnection(const STDPConnection &);
/**
* Default Destructor.
*/
~STDPConnection() {}
void check_connection(Node & s, Node & r, rport receptor_type, double_t t_lastspike);
/**
* Get all properties of this connection and put them into a dictionary.
*/
void get_status(DictionaryDatum & d) const;
/**
* Set properties of this connection from the values given in dictionary.
*/
void set_status(const DictionaryDatum & d, ConnectorModel &cm);
/**
* Set properties of this connection from position p in the properties
* array given in dictionary.
*/
void set_status(const DictionaryDatum & d, index p, ConnectorModel &cm);
/**
* Create new empty arrays for the properties of this connection in the given
* dictionary. It is assumed that they are not existing before.
*/
void initialize_property_arrays(DictionaryDatum & d) const;
/**
* Append properties of this connection to the given dictionary. If the
* dictionary is empty, new arrays are created first.
*/
void append_properties(DictionaryDatum & d) const;
/**
* Send an event to the receiver of this connection.
* \param e The event to send
* \param t_lastspike Point in time of last spike sent.
* \param cp common properties of all synapses (empty).
*/
void send(Event& e, double_t t_lastspike, const CommonSynapseProperties &cp);
// overloaded for all supported event types
using Connection::check_event;
void check_event(SpikeEvent&) {}
private:
double_t facilitate_(double_t w, double_t kplus);
double_t depress_(double_t w, double_t kminus);
// data members of each connection
double_t tau_plus_;
double_t lambda_;
double_t alpha_;
double_t mu_plus_;
double_t mu_minus_;
double_t Wmax_;
double_t Kplus_;
};
inline
double_t STDPConnection::facilitate_(double_t w, double_t kplus)
{
double_t norm_w = (w / Wmax_) + (lambda_ * std::pow(1.0 - (w/Wmax_), mu_plus_) * kplus);
return norm_w < 1.0 ? norm_w * Wmax_ : Wmax_;
}
inline
double_t STDPConnection::depress_(double_t w, double_t kminus)
{
double_t norm_w = (w / Wmax_) - (alpha_ * lambda_ * std::pow(w/Wmax_, mu_minus_) * kminus);
return norm_w > 0.0 ? norm_w * Wmax_ : 0.0;
}
inline
void STDPConnection::check_connection(Node & s, Node & r, rport receptor_type, double_t t_lastspike)
{
ConnectionHetWD::check_connection(s, r, receptor_type, t_lastspike);
// For a new synapse, t_lastspike contains the point in time of the last spike.
// So we initially read the history(t_last_spike - dendritic_delay, ..., T_spike-dendritic_delay]
// which increases the access counter for these entries.
// At registration, all entries' access counters of history[0, ..., t_last_spike - dendritic_delay] will be
// incremented by the following call to Archiving_Node::register_stdp_connection().
// See bug #218 for details.
r.register_stdp_connection(t_lastspike - Time(Time::step(delay_)).get_ms());
}
/**
* Send an event to the receiver of this connection.
* \param e The event to send
* \param p The port under which this connection is stored in the Connector.
* \param t_lastspike Time point of last spike emitted
*/
inline
void STDPConnection::send(Event& e, double_t t_lastspike, const CommonSynapseProperties &)
{
// synapse STDP depressing/facilitation dynamics
double_t t_spike = e.get_stamp().get_ms();
// t_lastspike_ = 0 initially
double_t dendritic_delay = Time(Time::step(delay_)).get_ms();
//get spike history in relevant range (t1, t2] from post-synaptic neuron
std::deque<histentry>::iterator start;
std::deque<histentry>::iterator finish;
// For a new synapse, t_lastspike contains the point in time of the last spike.
// So we initially read the history(t_last_spike - dendritic_delay, ..., T_spike-dendritic_delay]
// which increases the access counter for these entries.
// At registration, all entries' access counters of history[0, ..., t_last_spike - dendritic_delay] have been
// incremented by Archiving_Node::register_stdp_connection(). See bug #218 for details.
target_->get_history(t_lastspike - dendritic_delay, t_spike - dendritic_delay,
&start, &finish);
//facilitation due to post-synaptic spikes since last pre-synaptic spike
double_t minus_dt;
while (start != finish)
{
minus_dt = t_lastspike - (start->t_ + dendritic_delay);
start++;
if (minus_dt == 0)
continue;
weight_ = facilitate_(weight_, Kplus_ * std::exp(minus_dt / tau_plus_));
}
//depression due to new pre-synaptic spike
weight_ = depress_(weight_, target_->get_K_value(t_spike - dendritic_delay));
e.set_receiver(*target_);
e.set_weight(weight_);
e.set_delay(delay_);
e.set_rport(rport_);
e();
Kplus_ = Kplus_ * std::exp((t_lastspike - t_spike) / tau_plus_) + 1.0;
}
} // of namespace nest
#endif // of #ifndef STDP_CONNECTION_H