% This tex file creates a document describing a number of topology connection profiles. % % The folders doughnut, exponential, gaussian, gaussian2d, linear and rectangular is required to run this tex file. % Each folder should contain the images above.png, perspective.png, xaxis.png and yaxis.png. % These images can be created with the Python scripts in topology/doc/plotting_tools/ %\documentclass[]{article} \documentclass[landscape]{article} \usepackage{graphicx} \usepackage{subfigure} \usepackage[landscape]{geometry} \begin{document} \part{Appendix: Parameter functions} \large There exist a number of pre-defined functions that can be used to set up the weights, delays, and kernel values for a topological connection. \begin{table}[h] \Large \begin{tabular}{ | c | p{3cm} | p{12cm} | } \hline \textbf{Name} & \textbf{Parameters} & \textbf{Function} \\ \hline gaussian & c, p\_center, mean, sigma & \Large $c + p\_center * e^{-(distance-mean)^2/(2*sigma^2)}$ \\ \hline gaussian2D & c, p\_center, mean\_x, sigma\_x, mean\_y, sigma\_y, rho & \Large $c + p\_center * \newline e^{-(\frac{(x-mean\_x)^2}{sigma\_x^2} + \frac{(y-mean\_y)^2}{sigma\_y^2} - \frac{2*(x-mean\_x)*(y-mean\_y)*rho}{sigma\_x*sigma\_y})/(2*(1-rho^2))}$ \\ \hline linear & a, c & \Large $a*distance + c$ \\ \hline exponential & c, a, tau & \Large $c + a * e^{-distance/tau}$ \\ \hline uniform & min, max & \Large Random number in the range $[min, max]$ \\ \hline \end{tabular} \caption{Parameter functions.} \end{table} %gaussian2D & c, p\_center, mean\_x, sigma\_x, mean\_y, sigma\_y, rho & $c + p\_center * e^{-(\frac{(x-\overline{x})^2}{\sigma_{x}^2} + \frac{(y-\overline{y})^2}{\sigma_{y}^2} - \frac{2*(x-\overline{x})*(y-\overline{y})*\rho}{\sigma_{x}*\sigma_{y}})/(2*(1-\rho^2))}$ \\ \hline \clearpage %\section{Gaussian function: $c + p\_center * e^{-(distance-mean)^2/sigma^2}$} %$A*e^{-(d-d_{0})^2/sigma^2}+const.$ %\begin{itemize} %\item Mean: [-0.00048848623100408153, -0.0012246436775821302] %\item Covariance: [[ 0.19408748 0.00055834] % [ 0.00055834 0.19334064]] %\item MBB: [[-0.99998500000000001 -0.99998500000000001] % [0.99995400000000001 0.99994499999999997]] %\end{itemize} %\begin{tabular}{c} %\end{tabular} \begin{figure}[B] %\begin{center} \subfigure[Above]{\includegraphics[width=0.5\textwidth]{gaussian/above}} \subfigure[Perspective]{\includegraphics[width=0.5\textwidth]{gaussian/perspective}} \subfigure[Towards X axis]{\includegraphics[width=0.5\textwidth]{gaussian/xaxis}} \subfigure[Towards Y axis]{\includegraphics[width=0.5\textwidth]{gaussian/yaxis}} \caption{Gaussian connection profile with sigma equal to 0.3 (otherwise default values). The z-axis shows the relative distribution of the connections. The x- and y-axis shows the distances between the pre- and post-synaptic nodes involved in the different connections.} %\end{center} \end{figure} \clearpage %\section{Gaussian 2D function: $c + p\_center * e^{-(distance-mean)^2/sigma^2}$} \begin{figure}[B] %\begin{center} \subfigure[Above]{\includegraphics[width=0.5\textwidth]{gaussian2D/above}} \subfigure[Perspective]{\includegraphics[width=0.5\textwidth]{gaussian2D/perspective}} \subfigure[Towards X axis]{\includegraphics[width=0.5\textwidth]{gaussian2D/xaxis}} \subfigure[Towards Y axis]{\includegraphics[width=0.5\textwidth]{gaussian2D/yaxis}} \caption{2D gaussian connection profile with sigma\_x equal to 0.2 and sigma\_y equal to 0.4 (otherwise default values).} %\end{center} \end{figure} \clearpage %\section{Linear function: $c + p\_center * e^{-(distance-mean)^2/sigma^2}$} \begin{figure}[B] %\begin{center} \subfigure[Above]{\includegraphics[width=0.5\textwidth]{linear/above}} \subfigure[Perspective]{\includegraphics[width=0.5\textwidth]{linear/perspective}} \subfigure[Towards X axis]{\includegraphics[width=0.5\textwidth]{linear/xaxis}} \subfigure[Towards Y axis]{\includegraphics[width=0.5\textwidth]{linear/yaxis}} \caption{Linear connection profile with a = -1.3 and c = 1.0 (otherwise default values).} %\end{center} \end{figure} \clearpage %\section{Exponential function: $c + p\_center * e^{-(distance-mean)^2/sigma^2}$} \begin{figure}[B] %\begin{center} \subfigure[Above]{\includegraphics[width=0.5\textwidth]{exponential/above}} \subfigure[Perspective]{\includegraphics[width=0.5\textwidth]{exponential/perspective}} \subfigure[Towards X axis]{\includegraphics[width=0.5\textwidth]{exponential/xaxis}} \subfigure[Towards Y axis]{\includegraphics[width=0.5\textwidth]{exponential/yaxis}} \caption{Exponential connection profile with tau equal to 0.3 (otherwise default values).} %\end{center} \end{figure} \clearpage %\section{Doughnut region with gaussian: $c + p\_center * e^{-(distance-mean)^2/sigma^2}$} \begin{figure}[B] %\begin{center} \subfigure[Above]{\includegraphics[width=0.5\textwidth]{doughnut/above}} \subfigure[Perspective]{\includegraphics[width=0.5\textwidth]{doughnut/perspective}} \subfigure[Towards X axis]{\includegraphics[width=0.5\textwidth]{doughnut/xaxis}} \subfigure[Towards Y axis]{\includegraphics[width=0.5\textwidth]{doughnut/yaxis}} \caption{Gaussian connection profile with sigma equal to 0.3 (otherwise default values). A doughnut region with inner radius of 0.3 and outer radius of 1.0 is used. Z axis still shows relative distribution of connections.} %\end{center} \end{figure} \clearpage %\section{Rectangular region with distance independent kernel: $c + p\_center * e^{-(distance-mean)^2/sigma^2}$} \begin{figure}[B] %\begin{center} \subfigure[Above]{\includegraphics[width=0.5\textwidth]{rectangular/above}} \subfigure[Perspective]{\includegraphics[width=0.5\textwidth]{rectangular/perspective}} \subfigure[Towards X axis]{\includegraphics[width=0.5\textwidth]{rectangular/xaxis}} \subfigure[Towards Y axis]{\includegraphics[width=0.5\textwidth]{rectangular/yaxis}} \caption{Flat connection profile. A rectangular region with lower left corner equal to [-1, -1] and upper right corner equal to [1, 1] is used.} %\end{center} \end{figure} \end{document}