#! /usr/bin/env python
#
# gaussex.py
#
# This file is part of NEST.
#
# Copyright (C) 2004 The NEST Initiative
#
# NEST is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# NEST is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with NEST. If not, see <http://www.gnu.org/licenses/>.
'''
NEST Topology Module Example
Create two layers of 30x30 elements and connect
them using a Gaussian probabilistic kernel, visualize.
BCCN Tutorial @ CNS*09
Hans Ekkehard Plesser, UMB
'''
import pylab
import nest
import nest.topology as topo
pylab.ion()
nest.ResetKernel()
# create two test layers
a = topo.CreateLayer({'columns': 30, 'rows': 30, 'extent': [3.0, 3.0],
'elements': 'iaf_neuron'})
b = topo.CreateLayer({'columns': 30, 'rows': 30, 'extent': [3.0, 3.0],
'elements': 'iaf_neuron'})
conndict = {'connection_type': 'divergent',
'mask': {'circular': {'radius': 3.0}},
'kernel': {'gaussian': {'p_center': 1.0, 'sigma': 0.5}},
'weights': 1.0,
'delays': 1.0}
topo.ConnectLayers(a, b, conndict)
# plot targets of neurons in different grid locations
# first, clear existing figure, get current figure
pylab.clf()
fig = pylab.gcf()
# plot targets of two source neurons into same figure, with mask
# use different colors
for src_pos, color in [([15,15], 'blue'), ([0,0], 'green')]:
# obtain node id for center
src = topo.GetElement(a, src_pos)
topo.PlotTargets(src, b, mask=conndict['mask'], kernel=conndict['kernel'],
src_color=color, tgt_color=color, mask_color=color,
kernel_color=color, src_size=100,
fig=fig)
# beautify
pylab.axes().set_xticks(pylab.arange(-1.5, 1.55, 0.5))
pylab.axes().set_yticks(pylab.arange(-1.5, 1.55, 0.5))
pylab.grid(True)
pylab.axis([-2.0, 2.0, -2.0, 2.0])
pylab.axes().set_aspect('equal', 'box')
pylab.title('Connection targets, Gaussian kernel')
#pylab.savefig('gaussex.pdf')