#! /usr/bin/env python
#
# test_plotting.py
#
# This file is part of NEST.
#
# Copyright (C) 2004 The NEST Initiative
#
# NEST is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# NEST is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with NEST. If not, see <http://www.gnu.org/licenses/>.
"""
Tests for basic topology hl_api functions.
NOTE: These tests only test whether the code runs, it does not check
whether the results produced are correct.
"""
import unittest
import nest
import nest.topology as topo
import sys
from nest.tests.decorators import _skipIf
try:
import matplotlib.pyplot as plt
have_mpl = True
except ImportError:
have_mpl = False
@_skipIf(not have_mpl, 'Python matplotlib package not installed', 'testcase')
class PlottingTestCase(unittest.TestCase):
def test_PlotLayer(self):
"""Test plotting layer."""
ldict = {'elements': 'iaf_neuron', 'rows': 3, 'columns':3,
'extent': [2., 2.], 'edge_wrap': True}
nest.ResetKernel()
l = topo.CreateLayer(ldict)
topo.PlotLayer(l)
self.assertTrue(True)
def test_PlotTargets(self):
"""Test plotting targets."""
ldict = {'elements': ['iaf_neuron', 'iaf_psc_alpha'], 'rows': 3, 'columns':3,
'extent': [2., 2.], 'edge_wrap': True}
cdict = {'connection_type': 'divergent',
'mask': {'grid': {'rows':2, 'columns':2}}}
nest.ResetKernel()
l = topo.CreateLayer(ldict)
ian = [gid for gid in nest.GetLeaves(l)[0]
if nest.GetStatus([gid], 'model')[0] == 'iaf_neuron']
ipa = [gid for gid in nest.GetLeaves(l)[0]
if nest.GetStatus([gid], 'model')[0] == 'iaf_psc_alpha']
# connect ian -> all using static_synapse
cdict.update({'sources': {'model': 'iaf_neuron'},
'synapse_model': 'static_synapse'})
topo.ConnectLayers(l, l, cdict)
for k in ['sources', 'synapse_model']: cdict.pop(k)
# connect ipa -> ipa using stdp_synapse
cdict.update({'sources': {'model': 'iaf_psc_alpha'},
'targets': {'model': 'iaf_psc_alpha'},
'synapse_model': 'stdp_synapse'})
topo.ConnectLayers(l, l, cdict)
for k in ['sources', 'targets', 'synapse_model']: cdict.pop(k)
ctr = topo.FindCenterElement(l)
fig = topo.PlotTargets(ctr, l)
fig.gca().set_title('Plain call')
self.assertTrue(True)
def test_PlotKernel(self):
"""Test plotting kernels."""
ldict = {'elements': 'iaf_neuron', 'rows': 3, 'columns':3,
'extent': [2., 2.], 'edge_wrap': True}
nest.ResetKernel()
l = topo.CreateLayer(ldict)
f = plt.figure()
a1 = f.add_subplot(221)
ctr = topo.FindCenterElement(l)
topo.PlotKernel(a1, ctr, {'circular': {'radius': 1.}}, {'gaussian': {'sigma':0.2}})
a2 = f.add_subplot(222)
topo.PlotKernel(a2, ctr, {'doughnut': {'inner_radius': 0.5, 'outer_radius':0.75}})
a3 = f.add_subplot(223)
topo.PlotKernel(a3, ctr, {'rectangular': {'lower_left': [-.5,-.5],
'upper_right':[0.5,0.5]}})
self.assertTrue(True)
def suite():
suite = unittest.makeSuite(PlottingTestCase,'test')
return suite
if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity=2)
runner.run(suite())
import matplotlib.pyplot as plt
plt.show()