TITLE nap
: Persistent Na-current nu v en ko afhankelijk
: boltzman met halfmaximale concentratie = 7mM
: en activatie bij 3.5mM (1%)
: simple, with no inactivation-gate
: tau_activation = constant, 6ms
: tau_inactivation = very slow; 50000 keer trager dan tau_inact_m^3*h
:
: Activation from -60mV, peak at -10 mV
:
: Tweede poging door toevoeging inactivation gate met
: zelfde voltage gevoeligheid als Traub's m^3*h kanaal
: maar dan 100 keer langzamer.
:
: door aanpassing van het model CaChan.
: A Molecular Model of Low-Voltage-Activated Calcium Conductance
: van Wang?
UNITS {
(molar) = (1/liter)
(mV) = (millivolt)
(mA) = (milliamp)
(mM) = (millimolar)
}
INDEPENDENT {t FROM 0 TO 1 WITH 100 (ms)}
NEURON {
SUFFIX nap
USEION k READ ko
USEION na READ nai, nao, ena WRITE ina
GLOBAL ina_p_h, tau_act, conc_half, helling
RANGE gnabar, ina
}
UNITS {
:FARADAY = (faraday) (coulomb)
FARADAY = 96485.309 (coul)
R = (k-mole) (joule/degC)
}
PARAMETER {
celsius (degC)
gnabar=1e-6 (mho/cm2) : Maximum Permeability .2e-3*5 hans
helling=-.765 (mM) : K-slope of boltzman
conc_half=7 (mM) : conc. for halfmax. activation
ina_p_h = 25000 (ms) :taufactor tov snelle na-stroom
tau_act = 6 (ms)
}
ASSIGNED {
ina (mA/cm2)
ena (mV)
v (mV)
nai (mM) : <-vanwege deze
nao (mM) : <-en deze regel.
ko (mM)
}
STATE { ma mb ha hb } : fraction of states, m=fraction in open state.
BREAKPOINT {
SOLVE nastate METHOD sparse
:boltzman()
ina = gnabar*ma*ma*ha*kdep(ko)*(v-ena) :*ghk(v,nai,nao)
:ma = 1 - mb
:ha = 1 - hb
}
INITIAL {
:SOLVE nastate STEADYSTATE sparse
ma=m_inf(v)
mb=1-ma
ha=h_inf(v)
hb=1-ha
ina = gnabar*ma*ma*ha*kdep(ko)*(v-ena) :*ghk(v,nai,nao)
}
LOCAL a1,a2,b1,b2
KINETIC nastate {
a1 = m_a(v)
a2 = m_b(v)
b1 = h_a(v)
b2 = h_b(v)
~ mb <-> ma (a1, a2)
~ hb <-> ha (b1, b2)
CONSERVE ma + mb = 1
CONSERVE ha + hb = 1
}
FUNCTION kdep(ko (mM)) {
TABLE DEPEND conc_half, helling FROM 0 TO 150 WITH 150
kdep=1+ 2/(1+exp((ko-conc_half)/helling))
}
FUNCTION m_a(v(mV)) {
:LOCAL m_inf
TABLE FROM -150 TO 150 WITH 200
:if (v<=-70) {
: m_inf=0
:}else{
: m_inf=1/(1+(exp(-(v+39.7)/7.0)))
:}
m_a = m_inf(v)/tau_act
}
FUNCTION m_inf(v) {
TABLE FROM -150 TO 150 WITH 200
m_inf=1/(1+(exp(-(v+39.7)/7.0)))
}
FUNCTION m_b(v(mV)) {
:LOCAL m_inf
TABLE FROM -150 TO 150 WITH 200
:m_inf=1/(1+(exp(-(v+39.7)/7.0)))
m_b = (1-m_inf(v))/tau_act
}
FUNCTION h_a(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
h_a = (1/ina_p_h)*(0.128*exp((7-v-70)/18))
}
: 37 was 17
FUNCTION h_b(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
h_b = (1/ina_p_h)*4/(1+exp((30-v-70)/5))
}
: 60 was 40
FUNCTION h_inf(v) {
TABLE FROM -150 TO 150 WITH 200
h_inf=h_a(v)/(h_a(v)+h_b(v))
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) {
LOCAL z, eci, eco
z = (1e-3)*1*FARADAY*v/(R*(celsius+273.11247574)) : *1* -> valentie kalium
eco = co*efun(z)
eci = ci*efun(-z)
:high nao charge moves inward, mogelijke fouten vanwege oorsprong Ca(2+)!
:negative potential charge moves inward
ghk = (.001)*1*FARADAY*(eci - eco)
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}