/*
* Copyright (c) 2014 University of Lübeck
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* AUTHORS: Michael Schellenberger Costa: mschellenbergercosta@gmail.com
*
* Based on: Characterization of K-Complexes and Slow Wave Activity in a Neural Mass Model
* A Weigenand, M Schellenberger Costa, H-VV Ngo, JC Claussen, T Martinetz
* PLoS Computational Biology. 2014;10:e1003923
*/
/******************************************************************************/
/* Implementation of the simulation as MATLAB routine (mex compiler) */
/* mex command is given by: */
/* mex CXXFLAGS="\$CXXFLAGS -std=c++11 -O3" Cortex_mex.cpp Cortical_Column.cpp*/
/******************************************************************************/
#include "mex.h"
#include "matrix.h"
#include <iterator>
#include <vector>
#include "Cortical_Column.h"
#include "Data_Storage.h"
#include "Stimulation.h"
mxArray* SetMexArray(int N, int M);
mxArray* get_marker(Stim &stim);
/******************************************************************************/
/* Fixed simulation settings */
/******************************************************************************/
extern const int onset = 10; /* Time until data is stored in s */
extern const int res = 1E4; /* Number of iteration steps per s */
extern const int red = 1E2; /* Number of iterations steps not saved */
extern const double dt = 1E3/res; /* Duration of a time step in ms */
extern const double h = sqrt(dt); /* Square root of dt for SRK iteration */
/******************************************************************************/
/* Simulation routine */
/* lhs defines outputs */
/* rhs defines inputs */
/******************************************************************************/
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
/* Set the seed */
srand(time(NULL));
/* Fetch inputs */
const int T = (int) (mxGetScalar(prhs[0])); /* Duration of simulation in s */
const int Time = (T+onset)*res; /* Total number of iteration steps */
double* Param_Cortex = mxGetPr (prhs[1]); /* Parameters of cortical module */
double* var_stim = mxGetPr (prhs[2]); /* Parameters of stimulation protocol */
/* Initialize the population */
Cortical_Column Cortex(Param_Cortex);
/* Initialize the stimulation protocol */
Stim Stimulation(Cortex, var_stim);
/* Data container in MATLAB format */
std::vector<mxArray*> dataArray;
dataArray.reserve(6);
dataArray.push_back(SetMexArray(1, T*res/red)); // Vp
dataArray.push_back(SetMexArray(1, T*res/red)); // Na
dataArray.push_back(SetMexArray(1, T*res/red)); // s_ep
dataArray.push_back(SetMexArray(1, T*res/red)); // s_ei
dataArray.push_back(SetMexArray(1, T*res/red)); // s_gp
dataArray.push_back(SetMexArray(1, T*res/red)); // s_gi
/* Pointer to the data blocks */
std::vector<double*> dataPointer;
dataPointer.reserve(dataArray.size());
for (auto &dataptr : dataArray) {
dataPointer.push_back(mxGetPr(dataptr));
}
/* Simulation */
int count = 0;
for (unsigned t=0; t < Time; ++t) {
Cortex.iterate_ODE();
Stimulation.check_stim(t);
if(t >= onset*res && t%red == 0){
get_data(count, Cortex, dataPointer);
++count;
}
}
/* Return the data containers */
nlhs = dataArray.size()+1;
for (auto &dataptr : dataArray) {
plhs[std::distance(&dataptr, dataArray.data())] = dataptr;
}
plhs[dataArray.size()] = get_marker(Stimulation);
return;
}
/******************************************************************************/
/* Create MATLAB data containers */
/******************************************************************************/
mxArray* SetMexArray(int N, int M) {
mxArray* Array = mxCreateDoubleMatrix(0, 0, mxREAL);
mxSetM(Array, N);
mxSetN(Array, M);
mxSetData(Array, mxMalloc(sizeof(double)*M*N));
return Array;
}
mxArray* get_marker(Stim &stim) {
extern const int red;
mxArray* marker = mxCreateDoubleMatrix(0, 0, mxREAL);
mxSetM(marker, 1);
mxSetN(marker, stim.marker_stimulation.size());
mxSetData(marker, mxMalloc(sizeof(double)*stim.marker_stimulation.size()));
double* Pr_Marker = mxGetPr(marker);
unsigned counter = 0;
/* Division by res transforms marker time from dt to sampling rate */
for(auto & elem : stim.marker_stimulation) {
Pr_Marker[counter++] = elem/red;
}
return marker;
}