function B=inpaint_nans(A,method)
% inpaint_nans: in-paints over nans in an array
% usage: B=inpaint_nans(A)
%
% solves approximation to one of several pdes to
% interpolate and extrapolate holes
%
% arguments (input):
%   A - nxm array with some NaNs to be filled in
%
%   method - (OPTIONAL) scalar numeric flag - specifies
%       which approach (or physical metaphor to use
%       for the interpolation.) All methods are capable
%       of extrapolation, some are better than others.
%       There are also speed differences, as well as
%       accuracy differences for smooth surfaces.
%
%       methods {0,1,2} use a simple plate metaphor
%       methods {3} use a better plate equation,
%                   but will be slower
%       methods 4 use a spring metaphor
%
%       method == 0 --> (DEFAULT) see method 1, but
%         this method does not build as large of a
%         linear system in the case of only a few
%         NaNs in a large array.
%         Extrapolation behavior is linear.
%         
%       method == 1 --> simple approach, applies del^2
%         over the entire array, then drops those parts
%         of the array which do not have any contact with
%         NaNs. Uses a least squares approach, but it
%         does not touch existing points.
%         In the case of small arrays, this method is
%         quite fast as it does very little extra work.
%         Extrapolation behavior is linear.
%         
%       method == 2 --> uses del^2, but solving a direct
%         linear system of equations for nan elements.
%         This method will be the fastest possible for
%         large systems since it uses the sparsest
%         possible system of equations. Not a least
%         squares approach, so it may be least robust
%         to noise on the boundaries of any holes.
%         This method will also be least able to
%         interpolate accurately for smooth surfaces.
%         Extrapolation behavior is linear.
%         
%       method == 3 --+ See method 0, but uses del^4 for
%         the interpolating operator. This may result
%         in more accurate interpolations, at some cost
%         in speed.
%         
%       method == 4 --+ Uses a spring metaphor. Assumes
%         springs (with a nominal length of zero)
%         connect each node with every neighbor
%         (horizontally, vertically and diagonally)
%         Since each node tries to be like its neighbors,
%         extrapolation is as a constant function where
%         this is consistent with the neighboring nodes.
%
%
% arguments (output):
%   B - nxm array with NaNs replaced

% I always need to know which elements are NaN,
% and what size the array is for any method
[n,m]=size(A);
nm=n*m;
k=isnan(A(:));

% list the nodes which are known, and which will
% be interpolated
nan_list=find(k);
known_list=find(~k);

% how many nans overall
nan_count=length(nan_list);

% convert NaN indices to (r,c) form
% nan_list==find(k) are the unrolled (linear) indices
% (row,column) form
[nr,nc]=ind2sub([n,m],nan_list);

% both forms of index in one array:
% column 1 == unrolled index
% column 2 == row index
% column 3 == column index
nan_list=[nan_list,nr,nc];

% supply default method
if (nargin<2)|isempty(method)
  method = 0;
elseif ~ismember(method,0:4)
  error 'If supplied, method must be one of: {0,1,2,3,4}.'
end

% for different methods
switch method
 case 0
  % The same as method == 1, except only work on those
  % elements which are NaN, or at least touch a NaN.
  
  % horizontal and vertical neighbors only
  talks_to = [-1 0;0 -1;1 0;0 1];
  neighbors_list=identify_neighbors(n,m,nan_list,talks_to);
  
  % list of all nodes we have identified
  all_list=[nan_list;neighbors_list];
  
  % generate sparse array with second partials on row
  % variable for each element in either list, but only
  % for those nodes which have a row index > 1 or < n
  L = find((all_list(:,2) > 1) & (all_list(:,2) < n)); 
  nl=length(L);
  if nl>0
    fda=sparse(repmat(all_list(L,1),1,3), ...
      repmat(all_list(L,1),1,3)+repmat([-1 0 1],nl,1), ...
      repmat([1 -2 1],nl,1),nm,nm);
  else
    fda=spalloc(n*m,n*m,size(all_list,1)*5);
  end
  
  % 2nd partials on column index
  L = find((all_list(:,3) > 1) & (all_list(:,3) < m)); 
  nl=length(L);
  if nl>0
    fda=fda+sparse(repmat(all_list(L,1),1,3), ...
      repmat(all_list(L,1),1,3)+repmat([-n 0 n],nl,1), ...
      repmat([1 -2 1],nl,1),nm,nm);
  end
  
  % eliminate knowns
  rhs=-fda(:,known_list)*A(known_list);
  k=find(any(fda(:,nan_list(:,1)),2));
  
  % and solve...
  B=A;
  B(nan_list(:,1))=fda(k,nan_list(:,1))\rhs(k);
  
 case 1
  % least squares approach with del^2. Build system
  % for every array element as an unknown, and then
  % eliminate those which are knowns.

  % Build sparse matrix approximating del^2 for
  % every element in A.
  % Compute finite difference for second partials
  % on row variable first
  [i,j]=ndgrid(2:(n-1),1:m);
  ind=i(:)+(j(:)-1)*n;
  np=(n-2)*m;
  fda=sparse(repmat(ind,1,3),[ind-1,ind,ind+1], ...
      repmat([1 -2 1],np,1),n*m,n*m);
  
  % now second partials on column variable
  [i,j]=ndgrid(1:n,2:(m-1));
  ind=i(:)+(j(:)-1)*n;
  np=n*(m-2);
  fda=fda+sparse(repmat(ind,1,3),[ind-n,ind,ind+n], ...
      repmat([1 -2 1],np,1),nm,nm);
  
  % eliminate knowns
  rhs=-fda(:,known_list)*A(known_list);
  k=find(any(fda(:,nan_list),2));
  
  % and solve...
  B=A;
  B(nan_list(:,1))=fda(k,nan_list(:,1))\rhs(k);
  
 case 2
  % Direct solve for del^2 BVP across holes

  % generate sparse array with second partials on row
  % variable for each nan element, only for those nodes
  % which have a row index > 1 or < n
  L = find((nan_list(:,2) > 1) & (nan_list(:,2) < n)); 
  nl=length(L);
  if nl>0
    fda=sparse(repmat(nan_list(L,1),1,3), ...
      repmat(nan_list(L,1),1,3)+repmat([-1 0 1],nl,1), ...
      repmat([1 -2 1],nl,1),n*m,n*m);
  else
    fda=spalloc(n*m,n*m,size(nan_list,1)*5);
  end
  
  % 2nd partials on column index
  L = find((nan_list(:,3) > 1) & (nan_list(:,3) < m)); 
  nl=length(L);
  if nl>0
    fda=fda+sparse(repmat(nan_list(L,1),1,3), ...
      repmat(nan_list(L,1),1,3)+repmat([-n 0 n],nl,1), ...
      repmat([1 -2 1],nl,1),n*m,n*m);
  end
  
  % fix boundary conditions at extreme corners
  % of the array in case there were nans there
  if ismember(1,nan_list(:,1))
    fda(1,[1 2 n+1])=[-2 1 1];
  end
  if ismember(n,nan_list(:,1))
    fda(n,[n, n-1,n+n])=[-2 1 1];
  end
  if ismember(nm-n+1,nan_list(:,1))
    fda(nm-n+1,[nm-n+1,nm-n+2,nm-n])=[-2 1 1];
  end
  if ismember(nm,nan_list(:,1))
    fda(nm,[nm,nm-1,nm-n])=[-2 1 1];
  end
  
  % eliminate knowns
  rhs=-fda(:,known_list)*A(known_list);
  
  % and solve...
  B=A;
  k=nan_list(:,1);
  B(k)=fda(k,k)\rhs(k);
  
 case 3
  % The same as method == 0, except uses del^4 as the
  % interpolating operator.
  
  % del^4 template of neighbors
  talks_to = [-2 0;-1 -1;-1 0;-1 1;0 -2;0 -1; ...
      0 1;0 2;1 -1;1 0;1 1;2 0];
  neighbors_list=identify_neighbors(n,m,nan_list,talks_to);
  
  % list of all nodes we have identified
  all_list=[nan_list;neighbors_list];
  
  % generate sparse array with del^4, but only
  % for those nodes which have a row & column index
  % >= 3 or <= n-2
  L = find( (all_list(:,2) >= 3) & ...
            (all_list(:,2) <= (n-2)) & ...
            (all_list(:,3) >= 3) & ...
            (all_list(:,3) <= (m-2)));
  nl=length(L);
  if nl>0
    % do the entire template at once
    fda=sparse(repmat(all_list(L,1),1,13), ...
        repmat(all_list(L,1),1,13) + ...
        repmat([-2*n,-n-1,-n,-n+1,-2,-1,0,1,2,n-1,n,n+1,2*n],nl,1), ...
        repmat([1 2 -8 2 1 -8 20 -8 1 2 -8 2 1],nl,1),nm,nm);
  else
    fda=spalloc(n*m,n*m,size(all_list,1)*5);
  end
  
  % on the boundaries, reduce the order around the edges
  L = find((((all_list(:,2) == 2) | ...
             (all_list(:,2) == (n-1))) & ...
            (all_list(:,3) >= 2) & ...
            (all_list(:,3) <= (m-1))) | ...
           (((all_list(:,3) == 2) | ...
             (all_list(:,3) == (m-1))) & ...
            (all_list(:,2) >= 2) & ...
            (all_list(:,2) <= (n-1))));
  nl=length(L);
  if nl>0
    fda=fda+sparse(repmat(all_list(L,1),1,5), ...
      repmat(all_list(L,1),1,5) + ...
        repmat([-n,-1,0,+1,n],nl,1), ...
      repmat([1 1 -4 1 1],nl,1),nm,nm);
  end
  
  L = find( ((all_list(:,2) == 1) | ...
             (all_list(:,2) == n)) & ...
            (all_list(:,3) >= 2) & ...
            (all_list(:,3) <= (m-1)));
  nl=length(L);
  if nl>0
    fda=fda+sparse(repmat(all_list(L,1),1,3), ...
      repmat(all_list(L,1),1,3) + ...
        repmat([-n,0,n],nl,1), ...
      repmat([1 -2 1],nl,1),nm,nm);
  end
  
  L = find( ((all_list(:,3) == 1) | ...
             (all_list(:,3) == m)) & ...
            (all_list(:,2) >= 2) & ...
            (all_list(:,2) <= (n-1)));
  nl=length(L);
  if nl>0
    fda=fda+sparse(repmat(all_list(L,1),1,3), ...
      repmat(all_list(L,1),1,3) + ...
        repmat([-1,0,1],nl,1), ...
      repmat([1 -2 1],nl,1),nm,nm);
  end
  
  % eliminate knowns
  rhs=-fda(:,known_list)*A(known_list);
  k=find(any(fda(:,nan_list(:,1)),2));
  
  % and solve...
  B=A;
  B(nan_list(:,1))=fda(k,nan_list(:,1))\rhs(k);
  
 case 4
  % Spring analogy
  % interpolating operator.
  
  % list of all springs between a node and a horizontal
  % or vertical neighbor
  hv_list=[-1 -1 0;1 1 0;-n 0 -1;n 0 1];
  hv_springs=[];
  for i=1:4
    hvs=nan_list+repmat(hv_list(i,:),nan_count,1);
    k=(hvs(:,2)>=1) & (hvs(:,2)<=n) & (hvs(:,3)>=1) & (hvs(:,3)<=m);
    hv_springs=[hv_springs;[nan_list(k,1),hvs(k,1)]];
  end

  % delete replicate springs
  hv_springs=unique(sort(hv_springs,2),'rows');
  
  % build sparse matrix of connections, springs
  % connecting diagonal neighbors are weaker than
  % the horizontal and vertical springs
  nhv=size(hv_springs,1);
  springs=sparse(repmat((1:nhv)',1,2),hv_springs, ...
     repmat([1 -1],nhv,1),nhv,nm);
  
  % eliminate knowns
  rhs=-springs(:,known_list)*A(known_list);
  
  % and solve...
  B=A;
  B(nan_list(:,1))=springs(:,nan_list(:,1))\rhs;
  
end

% ====================================================
%      end of main function
% ====================================================
% ====================================================
%      begin subfunctions
% ====================================================
function neighbors_list=identify_neighbors(n,m,nan_list,talks_to)
% identify_neighbors: identifies all the neighbors of
%   those nodes in nan_list, not including the nans
%   themselves
%
% arguments (input):
%  n,m - scalar - [n,m]=size(A), where A is the
%      array to be interpolated
%  nan_list - array - list of every nan element in A
%      nan_list(i,1) == linear index of i'th nan element
%      nan_list(i,2) == row index of i'th nan element
%      nan_list(i,3) == column index of i'th nan element
%  talks_to - px2 array - defines which nodes communicate
%      with each other, i.e., which nodes are neighbors.
%
%      talks_to(i,1) - defines the offset in the row
%                      dimension of a neighbor
%      talks_to(i,2) - defines the offset in the column
%                      dimension of a neighbor
%      
%      For example, talks_to = [-1 0;0 -1;1 0;0 1]
%      means that each node talks only to its immediate
%      neighbors horizontally and vertically.
% 
% arguments(output):
%  neighbors_list - array - list of all neighbors of
%      all the nodes in nan_list

if ~isempty(nan_list)
  % use the definition of a neighbor in talks_to
  nan_count=size(nan_list,1);
  talk_count=size(talks_to,1);
  
  nn=zeros(nan_count*talk_count,2);
  j=[1,nan_count];
  for i=1:talk_count
    nn(j(1):j(2),:)=nan_list(:,2:3) + ...
        repmat(talks_to(i,:),nan_count,1);
    j=j+nan_count;
  end
  
  % drop those nodes which fall outside the bounds of the
  % original array
  L = (nn(:,1)<1)|(nn(:,1)>n)|(nn(:,2)<1)|(nn(:,2)>m); 
  nn(L,:)=[];
  
  % form the same format 3 column array as nan_list
  neighbors_list=[sub2ind([n,m],nn(:,1),nn(:,2)),nn];
  
  % delete replicates in the neighbors list
  neighbors_list=unique(neighbors_list,'rows');
  
  % and delete those which are also in the list of NaNs.
  neighbors_list=setdiff(neighbors_list,nan_list,'rows');
  
else
  neighbors_list=[];
end