#Thalamic model param g_LK=0.0 param g_h=0.025 #Time constants for excitatory and inhibitory neurons in ms !tau=20 #Conductances !g_L=1 !g_T_t=3 !g_T_r=2.3 !g_AMPA=1 !g_GABA=1 #Reversal potential of excitatory and inhibitory synapses in mV !E_AMPA=0 !E_GABA=-70 # Reversal potential of other currents !E_L=-70 !E_K=-100 !E_Ca=120 !E_h=-40 #Maximum firing rate in ms^-1 !Q_max=400E-3 #Sigmoid threshold in mV !theta=-58.5 #Slope for sigmoid in mV !sigma=6 #Scaling parameter for sigmoidal mapping(dimensionless) !C=(pi/sqrt(3)) #PSC rise time in ms^-1 !gamma_t=70E-3 !gamma_r=100E-3 #Connectivities !N_tr=3 !N_rt=5 !N_rr=25 #Calcium dynamic !alpha_Ca=-51.8E-6 !tau_Ca=10 !Ca_0=2.4E-4 #Parameters of h-current !k1= 2.5E7 !k2= 4E-4 !k3= 1E-1 !k4= 1E-3 !n_P= 4 !g_inc= 2 #Functions #Firing rates Qt(Vt)=Q_max/(1+exp(-C*(Vt-theta)/sigma)) Qr(Vr)=Q_max/(1+exp(-C*(Vr-theta)/sigma)) #Activation functions m_inf_T_t(Vt)=1/(1+exp(-(Vt+59)/6.2)) m_inf_T_r(Vr)=1/(1+exp(-(Vr+52)/7.4)) h_inf_T_t(Vt)=1/(1+exp((Vt+81)/4)) h_inf_T_r(Vr)=1/(1+exp((Vr+80)/5)) tau_h_T_t(Vt)=(30.8+(211.4+exp((Vt+115.2)/5))/(1+exp((Vt+86)/3.2)))/3.7371928 tau_h_T_r(Vr)=(85+1/(exp((Vr+48)/4)+exp(-(Vr+407)/50)))/3.7371928 m_inf_h(Vt)=1/(1+exp((Vt+75)/5.5)) tau_m_h(Vt)=(20+1000/(exp((Vt+71.5)/14.2)+exp(-(Vt+89)/11.6))) #Synaptic currents I_tr(Vr,s_er)=s_er*(Vr-E_AMPA) I_rt(Vt,s_rt)=s_rt*(Vt-E_GABA) I_rr(Vr,s_rr)=s_rr*(Vr-E_GABA) #Leak currents I_L_t(Vt)=g_L*(Vt-E_L) I_L_r(Vr)=g_L*(Vr-E_L) I_LK_t(Vt)=g_LK*(Vt-E_K) I_LK_r(Vr)=g_LK*(Vr-E_K) #Calicum current I_T_t(Vt,h_T_t)=g_T_t*m_inf_T_t(Vt)*m_inf_T_t(Vt)*h_T_t*(Vt-E_Ca) I_T_r(Vr,h_T_r)=g_T_r*m_inf_T_r(Vr)*m_inf_T_r(Vr)*h_T_r*(Vr-E_Ca) #h-current I_h(Vt,m_h,m_h2)=g_h*(m_h+g_inc*m_h2)*(Vt-E_h) # Protein binding P_h(Ca)=(k1*Ca*Ca*Ca*Ca/(k1*Ca*Ca*Ca*Ca+k2)) #System equation Vt'=-(I_L_t(Vt)+I_rt(Vt,s_rt))/tau-(I_LK_t(Vt)+I_T_t(Vt,h_T_t)+I_h(Vt,m_h,m_h2)) Vr'=-(I_L_r(Vr)+I_tr(Vr,s_er)+I_rr(Vr,s_rr))/tau-(I_LK_r(Vr)+I_T_r(Vr,h_T_r)) Ca'=(alpha_Ca*I_T_t(Vt,h_T_t)-(Ca-Ca_0)/tau_Ca) h_T_t'=(h_inf_T_t(Vt)-h_T_t)/tau_h_T_t(Vt) h_T_r'=(h_inf_T_r(Vr)-h_T_r)/tau_h_T_r(Vr) m_h'=((m_inf_h(Vt)*(1-m_h2)-m_h)/tau_m_h(Vt)-k3*P_h(Ca)*m_h+k4*m_h2) m_h2'=(k3*P_h(Ca)*m_h-k4*m_h2) s_er'=x_er s_rt'=x_rt s_rr'=x_rr x_er'=gamma_t*gamma_t*(N_tr*Qt(Vt)-s_er)-2*gamma_t*x_er x_rt'=gamma_r*gamma_r*(N_rt*Qr(Vr)-s_rt)-2*gamma_r*x_rt x_rr'=gamma_r*gamma_r*(N_rr*Qr(Vr)-s_rr)-2*gamma_r*x_rr # define the initial states init Vt=-68,Vr=-68,Ca=2.4E-4 # simulation settings @ maxstor=1000000,total=3000,dt=0.1,meth=rungekutta,njmp=10,bound=200 @ YLO=-80,YHI=0,XLO=0,XHI=3000 @ nmax=80000,npr=0,ntst=100,epsl=1e-9,epss=1e-7,epsu=1e-7,parmin=0,parmax=0.1, @ autoxmin=0,autoxmax=0.1,autoymin=-100,autoymax=0, ds=1e-3,dsmin=1e-5,dsmax=0.005 done